Mechanical Power Engineering Dept., Zagazig University, Al-Sahrkia, Egypt


This study concentrates on pelletization of powdered corn cob  and wheat dust with 40% Epoxy binder. Two cylindrical pellets of different sizes and a new hexagonal one were investigated in this work. By densification process, the bulk density increased 8-10 times, having its maximum value fora hexagonal shape (new shape). It was found that the compressive resistance, the water resistance and the impact resistance of the pellets were in general higher for pellets produced at higher pressure.  It was found that due to the binder and  pelletization, the fuel quality was enhanced compared to the raw biomass as: the moisture content decreased, both fixed carbon and carbon contents increased, ash content reduced, oxygen content decreased and higher heating value (H.H.V) increased. Scanning Electron Microscopy was used to identify the binding mechanism of biomass dust particles in pellets. Pelletization process had improved combustion characteristics compared to raw biomass as: high combustion temperature ranges  [T_onset becomes lower and T_offset becomes higher], maximum weight loss rates decreased and reduced residues which leads to a higher combustion efficiency. The analysis of ash yields of combustion process was investigated.  It was found that the fouling index (FI) and slagging index (SI) tendency of wheat dust pellets are higher than that of corn cob pellets.


1.     Mamma, D., E. Kourtoglou and P. Christakopoulos, 2008. Fungal multienzyme production on industrial by-products of the citrus-processing industry. Bioresource technology, 99(7): 2373-2383.
2.     Golbitz, P., 1995. Traditional soyfoods: processing and products. The Journal of nutrition, 125(3): 570S.
3.     Said, N., S. El-Shatoury, L. Díaz and M. Zamorano, 2013. Quantitative appraisal of biomass resources and their energy potential in Egypt. Renewable and Sustainable Energy Reviews, 24: 84-91.
4.     Werther, J., M. Saenger, E.-U. Hartge, T. Ogada and Z. Siagi, 2000. Combustion of agricultural residues. Progress in energy and combustion science, 26(1): 1-27.
5.     El-Sayed, S.A. and M. Khairy, 2015. Effect of heating rate on the chemical kinetics of different biomass pyrolysis materials. Biofuels, 6(3-4): 157-170.
6.     Obernberger, I. and G. Thek, 2004. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass and bioenergy, 27(6): 653-669.
7.     Rumpf, H., 2013. The strength of granules and agglomerate.
8.     Lewandowski, I. and A. Kicherer, 1997. Combustion quality of biomass: practical relevance and experiments to modify the biomass quality of Miscanthus x giganteus. European Journal of Agronomy, 6(3): 163-177.
9.     Fagan, C.C., C.D. Everard and K. McDonnell, 2011. Prediction of moisture, calorific value, ash and carbon content of two dedicated bioenergy crops using near-infrared spectroscopy. Bioresource technology, 102(8): 5200-5206.
10.   Everard, C., C. Fagan and K. McDonnell, 2012. Visiblenear infrared spectral sensing coupled with chemometric analysis as a method for on-line prediction of milled biomass composition pre-pelletising. Journal of Near Infrared Spectroscopy, 20(3): 361.
11.   Adapa, P., L. Tabil, G. Schoenau, B. Crerar and S. Sokjansanj, 2002. Pelletization of Alfalfa Grinds-Compression Characteristics of Fractionated Alfalfa Grinds. Powder Handling and Processing, 14(4): 252-259.
12.   Adapa, P., G. Schoenau, L. Tabil, E. Arinze, A. Singh and A. Dalai, 2007. Customized and value-added high quality Alfalfa products: A new concept.
13.   Kaliyan, N. and R.V. Morey. Densification of corn stover. in 2005 ASAE Annual Meeting. 2005. American Society of Agricultural and Biological Engineers.
14.   Stevens, C.A., Starch gelatinization and the influence of particle size, steam pressure and die speed on the pelleting process1987.
15.   Kaliyan, N. and R.V. Morey. Roll press briquetting of corn stover and switchgrass: A pilot scale continuous briquetting study. in 2007 ASAE Annual Meeting. 2007. American Society of Agricultural and Biological Engineers.
16.   Shaw, M.D. and L.G. Tabil. Compression and Relaxation Characteristics of Selected BiomassGrinds. in 2007 ASAE Annual Meeting. 2007. American Society of Agricultural and Biological Engineers.
17.   Colley, Z., O. Fasina, D. Bransby and Y. Lee, 2006. Moisture effect on the physical characteristics of switchgrass pellets. Transactions of the ASABE, 49(6): 1845-1851.
18.   Lam, P., S. Sokhansanj, X. Bi, C. Lim, L. Naimi, M. Hoque, S. Mani, A. Womac, S. Narayan and X. Ye, 2008. Bulk density of wet and dry wheat straw and switchgrass particles. Applied Engineering in Agriculture, 24(3): 351-358.
19.   Sun, Y. and J. Cheng, 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource technology, 83(1): 1-11.
20.   Larsson, S.H., M. Thyrel, P. Geladi and T.A. Lestander, 2008. High quality biofuel pellet production from pre-compacted low density raw materials. Bioresource technology, 99(15): 7176-7182.
21.   Mani, S., L. Tabil and S. Sokhansanj, 2003. Compaction of biomass grinds-an overview of compaction of biomass grinds. Powder Handling and Processing, 15(3): 160-168.
22.   Mani, S., S. Sokhansanj, X. Bi and A. Turhollow, 2006. Economics of producing fuel pellets from biomass. Applied Engineering in Agriculture, 22(3): 421.
23.   Zhou, B., K.E. Ileleji and G. Ejeta, 2008. Physical property relationships of bulk corn stover particles. Trans. ASABE, 51(2): 581-590.
24.   Kaliyan, N. and R.V. Morey, 2009. Densification characteristics of corn stover and switchgrass. Transactions of the ASABE, 52(3): 907-920.
25.   Erol, M., H. Haykiri-Acma and S. Küçükbayrak, 2010. Calorific value estimation of biomass from their proximate analyses data. Renewable energy, 35(1): 170-173.
26.   Kaliyan, N. and R.V. Morey, 2009. Factors affecting strength and durability of densified biomass products. Biomass and bioenergy, 33(3): 337-359.
27.   Thek, G. and I. Obernberger, The pellet handbook: the production and thermal utilization of biomass pellets2012: Routledge.
28.   Sokhansanj, S., S. Mani, X. Bi, P. Zaini and L. Tabil. Binderless pelletization of biomass. in 2005 ASAE Annual Meeting. 2005. American Society of Agricultural and Biological Engineers.
29.   Tumuluru, J.S., C.T. Wright, J.R. Hess and K.L. Kenney, 2011. A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels, Bioproducts and Biorefining, 5(6): 683-707.
30.   Bryers, R.W., 1996. Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Progress in energy and combustion science, 22(1): 29-120.
31.   Várhegyi, G., H. Chen and S. Godoy, 2009. Thermal decomposition of wheat, oat, barley, and Brassica carinata straws. A kinetic study. Energy & Fuels, 23(2): 646-652.
32.   Cai, J. and L. Bi, 2009. Kinetic analysis of wheat straw pyrolysis using isoconversional methods. Journal of Thermal Analysis and Calorimetry, 98(1): 325.
33.   Yin, C., L.A. Rosendahl and S.K. Kær, 2008. Grate-firing of biomass for heat and power production. Progress in Energy and Combustion Science, 34(6): 725-754.
34.   Bashir, M.S., P.A. Jensen, F. Frandsen, S. Wedel, K. Dam-Johansen, J. Wadenbäck and S.T. Pedersen, 2012. Ash transformation and deposit build-up during biomass suspension and grate firing: Full-scale experimental studies. Fuel Processing Technology, 97: 93-106.
35.   Näzelius, I.-L., J. Fagerström, C. Boman, D. Boström and M. Öhman, 2015. Slagging in Fixed-Bed Combustion of Phosphorus-Poor Biomass: Critical Ash-Forming Processes and Compositions. Energy & Fuels, 29(2): 894-908.
36.   Fagerström, J., I.-L. Näzelius, C. Gilbe, D. Boström, M. Öhman and C. Boman, 2014. Influence of peat ash composition on particle emissions and slag formation in biomass grate co-combustion. Energy & Fuels, 28(5): 3403-3411.
37.   Khashaba, U., 2016. Nanoparticle type effects on flexural, interfacial and vibration properties of GFRE composites. Chinese Journal of Aeronautics, 29(2): 520-533.
38.   International, A., Standard test methods for direct moisture content measurement of wood and wood-base materials. ASTM D4442-07, 2007, ASTM International West Conshohocken, Pennsylvania.
39.   McCabe, D.E., J.G. Merkle and K. Wallin, An introduction to the development and use of the master curve method2005: ASTM International.
40.   Chin, O.C. and K.M. Siddiqui, 2000. Characteristics of some biomass briquettes prepared under modest die pressures. Biomass and Bioenergy, 18(3): 223-228.
41.   Mani, S., L.G. Tabil and S. Sokhansanj, 2006. Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass and Bioenergy, 30(7): 648-654.
42.   Behnke, K.C. Factors affecting pellet quality. 1994. Maryland Nutrition Conference. Dept of Poultry Science and animal Science, collage of Agricultural, University of Maryland, collage Park.
43.   Franke, M. and A. Rey, 2006. Pelleting quality. World Grain, 24(5): 78-79.
44.   Pietsch, W.B., Agglomeration processes: phenomena, technologies, equipment2008: John Wiley & Sons.
45.   ASTM, D., 440-86. Standard test method of drop shatter test for coal. Annual book of ASTM Standards, 5: 188-91.
46.   Tayade, S., 2009. Evaluation of differentb briquette making for gasifier. Unpublished M. Tech. Thesis, PGI, Dr. PDKV, Akola.
47.   ISO, E., 2014. Solid biofuels–fuel specifications and classes–Part 1: general requirements.
48.   Kaliyan, N., Densification of biomass2008: ProQuest.
49.   Vassilev, S.V., D. Baxter, L.K. Andersen and C.G. Vassileva, 2010. An overview of the chemical composition of biomass. Fuel, 89(5): 913-933.
50.   Akowuah, J.O., F. Kemausuor and S.J. Mitchual, 2012. Physico-chemical characteristics and market potential of sawdust charcoal briquette. International Journal of Energy and Environmental Engineering, 3(1): 20.
51.   Gravalos, I., D. Kateris, P. Xyradakis, T. Gialamas, S. Loutridis, A. Augousti, A. Georgiades and Z. Tsiropoulos. A study on calorific energy values of biomass residue pellets for heating purposes. in Proceedings on Forest Engineering: Meeting the Needs of the Society and the Environment, Padova, Italy. 2010.
52.   O''dogherty, M. and J. Wheeler, 1984. Compression of straw to high densities in closed cylindrical dies. Journal of Agricultural Engineering Research, 29(1): 61-72.
53.   Keown, D.M., G. Favas, J.-i. Hayashi and C.-Z. Li, 2005. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash. Bioresource technology, 96(14): 1570-1577.
54.   Pedersen, A.J., S.C. Van Lith, F.J. Frandsen, S.D. Steinsen and L.B. Holgersen, 2010. Release to the gas phase of metals, S and Cl during combustion of dedicated waste fractions. Fuel Processing Technology, 91(9): 1062-1072.
55.   Niedziółka, I., M. Szpryngiel, M. Kachel-Jakubowska, A. Kraszkiewicz, K. Zawiślak, P. Sobczak and R. Nadulski, 2015. Assessment of the energetic and mechanical properties of pellets produced from agricultural biomass. Renewable Energy, 76: 312-317.
56.   Carroll, J.P. and J. Finnan, 2012. Physical and chemical properties of pellets from energy crops and cereal straws. Biosystems Engineering, 112(2): 151-159.
57.   Obernberger, I., T. Brunner and G. Bärnthaler, 2006. Chemical properties of solid biofuels—significance and impact. Biomass and Bioenergy, 30(11): 973-982.
58.   Masnadi, M.S., R. Habibi, J. Kopyscinski, J.M. Hill, X. Bi, C.J. Lim, N. Ellis and J.R. Grace, 2014. Fuel characterization and co-pyrolysis kinetics of biomass and fossil fuels. Fuel, 117: 1204-1214.
59.   Ghaly, A. and A. Ergudenler, 1991. Thermal degradation of cereal straws in air and nitrogen. Applied biochemistry and biotechnology, 28(1): 111-126.
60.   Jeguirim, M., S. Dorge and G. Trouvé, 2010. Thermogravimetric analysis and emission characteristics of two energy crops in air atmosphere: Arundo donax and Miscanthus giganthus. Bioresource technology, 101(2): 788-793.
61.   Biagini, E. and L. Tognotti, 2006. Comparison of devolatilization/char oxidation and direct oxidation of solid fuels at low heating rate. Energy & fuels, 20(3): 986-992.
62.   Jensen, P.A., F.J. Frandsen, J. Hansen, K. Dam-Johansen, N. Henriksen and S. Hörlyck, 2004. SEM investigation of superheater deposits from biomass-fired boilers. Energy & Fuels, 18(2): 378-384.
63.   Khan, A., W. De Jong, P. Jansens and H. Spliethoff, 2009. Biomass combustion in fluidized bed boilers: potential problems and remedies. Fuel processing technology, 90(1): 21-50.
64.   Pronobis, M., 2005. Evaluation of the influence of biomass co-combustion on boiler furnace slagging by means of fusibility correlations. Biomass and Bioenergy, 28(4): 375-383.
65.          Bapat, D., S. Kulkarni and V. Bhandarkar, Design and operating experience on fluidized bed boiler burning biomass fuels with high alkali ash, 1997, American Society of Mechanical Engineers, New York, NY (United States).