School of Industrial Technology, UniversitiSains Malaysia, 11800 Minden, Penang, Malaysia


Recycling of Construction and Demolition Waste (CDW) aims to minimize the generation of waste and  reduce the dependency on  natural resources. The aims of the research  are to characterize inorganic element and to determine the leaching behavior of CDW (concrete and gypsum) by means of the leaching test. The analyzed results were compared with the European Union (EU) Landfill Directive to assess their acceptance criteria. Both wastes were found to have elements of Ca, Mg, Fe, Zn, Mn, Pb, Cu, Cd, As, Cr, Se, Ni, CI and SO42-. The highest concentration and variety of inorganic element found in waste gypsum (WG) were SO42->Ca>CI>Mg>Zn>Cu>Fe. X-ray diffractometric (XRD)  analysis  proved  that  the  WCo  was  dominated  by  quartz,  calcite,  ettringite,  cordierite, diopside and the WG was only dominated by gypsum. The leaching behavior of WG demonstrated pH dependent particularly for the elements of Ca, Mg, Fe, Zn, Cu and Mn but only the elements of Ca and Cr in WCo were shown to be pH dependent in the leaching test.  The element of SO42- from the WG indicated a higher reading than WCo without the influence of pH. Noticeably, the concentration of SO42- within the WG strongly require regulation and control before it can be utilized as part of raw materials in the production of environmental friendly recycled building materials.


1.   CIDB. Construction industry master plan CIMP Malaysia. 2012. centre/construction-industry-master-plancimp-malaysia. [accessed 06.03.12].
2.   Bell N., 1998. Waste minimization and resource recovery. The environment design guide, Gen 21, Vol. 2. Canberra: Royal Australian Institute of Architects.
3.   US  EPA,  Environment  Protection  Agency.  2004.  RCRA  in focus;2004. [accessed 20.08.11]
4.   Hong Kong EDP (Environment Protection Department). 2007. Monitoring of solid waste in Hong Kong. df [accessed 28.05.12].
5.   Wang, J.Y., X.P. Kang and V.W.Y. Tam, 2008. An investigation of construction wastes: an empirical study in Shenzhen. Journal of Engineering Design and Technology, 6: 227-236.
6.   The Star Online, Manyin: “ Recycle wood & construction waste”. 2006. [accessed on 24 July 2012].
7.   Nagapan S., I.A. Rahman, A. Asmi and A.H.A. Adnan, 2013. Study  of  Site’s  Construction  Waste  in  Batu  Pahat,  Johor,” Proceeding Engineering (Elsevier), 53:99-103.
8.   Aziz S.Q., H.A. Aziz, M.S. Yusoff, M.J.K. Bashir and M. Umar, 2010.  Leachate Characterization in semi-aerobic and anaerobic sanitary  landfills:  A  comparative  study.  Journal  of Environmental Management, 91: 2608-2614.
9.   Nguyen, M. and H.ThiQuyah, 2012. Chemical precipitation of ammonia and phosphate from Nam Son Landfill leachate, Hanoi. Iranica Journal of Energy & Environmental (Special issue on Environmental Technology), 3: 32-36
10. Hassan,  H.,  A.  Masumeh,  V.  Hossein,  P.  Maryam  and  K. Tahereh, 2013. Industrial waste management with application of RIAM Environmental Assessment: A case study on Taos Industrial State, Mashad. Iranica Journal of Energy & Environment, 4: 142-149.
11. Mohamad, G., S. Syafalni and S. Mohammad, 2014. Public perception  on the current  solid  waste management  system in Malaysia:  A  comparative  study  of  Matang  Landfill  &  Bukit Tagar Sanitary Landfill (BTSL). World Applied Science Journal, 32: 872-883.
12. Marta, S.D.J. and A.G. Pilar, 2008. Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Construction and Building Material, 23: 872-877.
13. Poon,  C.S.  and  D.  Chan,  2006.  Paving  blocks  made  with recycled concrete aggregate and crushed clay brick. Construction Building Materials, 20: 569-577.
14. Kenai  S.  and  F.  Debieb,  2008.  The  use  of  coarse  and  fine crushed bricks as aggregate in concrete. Construction and Building Materials, 22: 886-893.
15. Ummi K., H.M.N. Mashitah and AB. Badorul, 2008. Recycling of clay based demolition wastes for the production of concrete block. International Conference on Environment (ICENV), 1-5.
16. Michelis I., F. Ferella, F. Beolchini, A. Olivieri and F. Vegliò, 2009. Characterisation and classification of solid wastes coming from e acid leaching of low-grade manganiferous ore. Journal of Hazardous Material, 162(2-3), 1285-1291.
17. Kosson D.S.,C.G. Andrew, D. Rossane and  HA., Van der Sloot, 2014.   pH-dependent   leaching   of   constituents   of   potential concern from concrete materials containing coal combustion fly ash. Chemosphere, 103: 140-147.
18. Polo M.J., D. Domínguez and J.V. Giráldez, 2005. Leaching of metals from residual contamination points in the basin of Guadiamar.  VII  Jornadas  de  Investigación    en  la  Zona  no Saturada del Suelo. La Coruña (Spain). ISBN:84-9749-171-8.
19. EU Landfill directive, 1999. European Union’s Landfill directive 1999/31/EC Official. Journal of the European Communities, L182/1/1999.
20. BS  812-102,  1989.  British  Standard:  Testing  aggregate,  Part 102: Methods for sampling. British Standard Institution.
21. BS 812-103.1, 1985. British Standard: Testing aggregate, Part 103: Sieve Test. British Standard Institution.
22. CEN/TS 14429, 2005. Characterization of waste – Leaching behaviour  test  –  influence  of  pH  on  leaching  with  initial acid/base addition.
23. Marshitah  MD.,   NLMA.   Wan,   HAB.   Badorul  and   ZMZ. Maria,2009. Chemical and mineralogical studies of concrete based-waste materials from demolition sites. Malaysia Construction Research Journal, 5: 5-9.
24. Limbachiya  M.C.,  E.  Marrocchino  and  A.  Koulouris,  2007. Chemical-mineralogical characterisation of coarse recycled concrete aggregate. Waste Management, 27: 201-208.
25. EHE-08, 2008. Spanish Minster of Public Works Instrucción de Hormigón Estructural EHE-08 (Spanish Structural Concrete Code).
26. CEN  EN-12620,  2008.  Aggregates  for  concrete,  Brussels, Belgium.
27. Tovar R.G., B. Marilda, P. Sergio, A. Diego and V. Enric, 2013. Expansion of mortars with gypsum contaminated fine recycled aggregates. Construction and Building Materials, 38: 1211-1220.
28. Neville A.M., 2002. Properties of concrete. Fourth ed. Pearson Education Limited. Essex, UK.
29. Rivas F.J, F. Beltrán, F.   Carvalho, B. Acedo and O. Gimeno, 2004. Stabilized leachates: Sequential coagulation-flocculation+chemical  oxidation  process.  Journal  of  Hazardous  Materials, 116: 95-102.
30. Ghafari S., H.A. Aziz and M..J.K. Bashir, 2005. The use of poly- aluminium chloride and alum for the treatment of partially stabilized  leachate:  A  comparative  study.  Desalination,  257:110-116.
31. Kosson  DS.,  H.A.  Van  der  Sloot,  F.  Sanchez     and  A.C. Garrabrants, 2002. Integrated framework for evaluating leaching in waste management and utilization of secondary materials. Environ. Eng. Sci., 19: 159-204.
32. Mulugeta  M.,  C.  Engelsen,  W.  Grethe  and  L.  Walter,  2011. Charge – based fractionation of oxyanion- forming metals and metalloids   leached   from   recycled   concrete   aggregates   of different degrees of carbonation: A comparison of laboratory and fields leaching tests. Waste Management, 31: 253-258.
33. Engelsen J.C., H.A. Van der Sloot, W. Grethe, P. Gordana, S.H. Erik and L. Walter, 2009. Release of major elements from recycled   concrete   aggregates   and   geochemical   modelling. Cement and Concrete Research, 39: 446-459.
34. Solpuker  U.,  J.  Sheet,  Y.  Kim  and  F.W.  Schwartz,  2014. Leaching potential of previous concrete and immobilization of Cu, Pb and Zn using previous concrete. Journal of Contaminant Hydrology, 161: 35-48.
35. Adela  P.G.,  A.  Jesús,  R.J.  Jose  and  A.  Francisco,  2012. Comparison of batch leaching tests and influence of pH on the release  of  metals  from  construction  and  demolition  wastes. Waste Management, 32: 88-95.
36. Halim C.E., JA. Scott, H. Natawardaya, R. Amal, D. Beydoun and G. Low, 2004. Comparison between acetic acid and landfill leachates from the leaching of Pb(II), Cd(II), As (V) and Cr(VI) from cementitious wastes. Environmental Science and Technology, 38: 3977-3983.
37. Evans N.D.M., 2008. Binding mechanisms of radionuclides to cement. Cement Concrete Research, 38: 543-553.
38. Bonhoure  I.,  I.  Baur,  E.  Wieland,  CA.  Johnson  and  AM. Scheidegger, 2006. Uptake of Se (IV/VI) oxyanions by hardened cement paste and cement materials: an X-ray absorption spectroscopy study. Cement Concrete Research, 36: 91-98.
39. Schiopu   N,   L.   Tiruta-Barna   ,   E.   Jayr,   J.   Méhu   and   P. Moszkowicz, 2009. Modelling and simulation of concrete leaching under outdoor exposure conditions. Sci. Total Environ, 407: 1613-1630.
40. You K.S., J.W. Ahn,  H.C. Cho, G.C. Han, D.Y. Han and K.H. Cho, 2007. Competing ion effect of stabilization by Cr(III) & Cr(VI) in ettrngite crystal structure. Solid State Phenom, 124-126:1629-1632.
41. Vegas I, J.A. Ibañez, A. Lisbona, A. Sáez de Cortazar and M. Frías, 2011. Pre-normative research on the use of mixed recycled aggregates in unbound road sections. Construction and Building Materials, 25: 2674-2682.
42. Gervais  C,  A.C.  Garrabrants  ,  F.  Sanchez,  R.  Barna,  P. Moszkowicz and DC. Kosson, 2004. The effect of carbonation and  drying  during  intermittent  leaching  on  the  release  of inorganic  constituents  from  a  cement-based  matrix.  Cement Concrete Research, 34,:119-131.
43. Bonen D., 1994. Calcium hydroxide deposition in the near interfacial zone in plain concrete. Journal of the American Ceramic Society, 77:193-196.
44. Stronach   S.A., N.L. Walker, D.E. Macphee and FP. Glasser, 1997. Reactions between cement and As(III) oxide: the system CaO-SiO2-As2O3-H2O at 25ºC. Waste Management, 17: 9-13.
45. Van der Hoek EE., O.A. Bonouvrie and R.N.J. Comans, 1994.Sorption  of  As  and  Se  on  mineral components  of  Fly  Ash- relevance for leaching processes. Applied Geochemistry, 9: 403-412.
46. Baur I. and CA.Johnson, 2003.Sorption of selenite and selenite to cement minerals. Environmental Science and Technology, 37: 3442-3447.