Document Type : ACEC-2023

Authors

Faculty of Mechanical Engineering, Microfluidics and MEMs Lab, Babol Noshirvani University of Technology, Babol, Iran

Abstract

The challenge of particle deposition in microchannels has consistently posed issues in nanofluids, adversely impacting the heat transfer rate. This study investigates the novel approach of employing a magnetic field to prevent deposition and enhance the heat transfer of nanoparticles in microchannels, utilizing Euler-Lagrange method. The analysis involves the coupled solution of momentum and energy equations, incorporating forces such as Brownian motion, thermophoresis, drag, and volumetric force. The findings within the explored parameters indicate that temperature variations affecting particles beyond the thermal boundary layer have a comparatively minor impact compared to those within the boundary layer. This presents an opportunity for optimizing nanoparticle consumption. Additionally, the study reveals that a non-developed flow at the inlet results in lower particle deposition compared to a developed inlet. The results show that an increase in the Reynolds number from 50 to 300 leads to a 1.75% increase in the distance of particles from the wall. The study also delves into the positioning of the current-carrying wire, demonstrating that placing the wire at the microchannel entrance significantly reduces particle deposition. Furthermore, the results indicate that with an increase in electrical current up to 4 amperes, the efficiency of non-deposition reaches 100%.

Keywords

Main Subjects

  1. Jalili P, Azar AA, Jalili B, Ganji DD. Study of nonlinear radiative heat transfer with magnetic field for non-Newtonian Casson fluid flow in a porous medium. Results in Physics. 2023; 48: 106371. Doi: 1016/j.rinp.2023.106371
  2. Jalili B, Emad M, Jalili P, Ganji DD, Saleem S, Tag-eldin EM. Thermal analysis of boundary layer nanofluid flow over the movable plate with internal heat generation, radiation, and viscous dissipation. Case Studies in Thermal Engineering. 2023: 103203. Doi: 1016/j.csite.2023.103203
  3. Vanaei P, Jalili B, Hosseinzadeh M, Jalili P. Efficiency Optimization Thermal Analysis and Power Output of a Modified Incinerator Plant Using Organic Rankine Cycle. International Journal of Engineering. 2023; 36(7): 1300-9. Doi: 5829/IJE.2023.36.07A.11
  4. Hedayati N, Ramiar A. Investigation of two phase unsteady nanofluid flow and heat transfer between moving parallel plates in the presence of the magnetic field using GM. Challenges in Nano and Micro Scale Science and Technology. 2016; 4(1): 52-8. Doi: 7508/TPNMS.2016.02.006
  5. Hedayati N, Ramiar A, Sedighi K. Investigation of Visco-rheological Properties of Polymeric Fluid on Electrothermal Pumping. Journal of Applied and Computational Mechanics. 2024; 10(1): 164-82. Doi: 22055/JACM.2023.44214.4180
  6. Wang X, Xu X, Choi SU. Thermal conductivity of nanoparticle-fluid mixture. Journal of thermophysics and heat transfer. 1999; 13(4): 474-80. Doi: 2514/2.6486
  7. Lee S, Choi S-S, Li S, and, Eastman J. Measuring thermal conductivity of fluids containing oxide nanoparticles. 1999. Doi: 1115/1.2825978
  8. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. International Journal of heat and fluid flow. 2000; 21(1): 58-64. Doi: 1016/S0142-727X(99)00067-3
  9. Keblinski P, Phillpot S, Choi S, Eastman J. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International journal of heat and mass transfer. 2002; 45(4): 855-63. Doi: 1016/S0017-9310(01)00175-2
  10. Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transfer. 2003; 125(4): 567-74. Doi: 1115/1.1571080
  11. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International journal of heat and mass transfer. 2003; 46(19): 3639-53. Doi: 1016/S0017-9310(03)00156-X
  12. Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International journal of heat and mass transfer. 2004; 47(24): 5181-8. Doi: 1016/j.ijheatmasstransfer.2004.07.012
  13. Jalili B, Roshani H, Jalili P, Jalili M, Pasha P, Ganji DD. The magnetohydrodynamic flow of viscous fluid and heat transfer examination between permeable disks by AGM and FEM. Case Studies in Thermal Engineering. 2023; 45: 102961. Doi: 1016/j.csite.2023.102961
  14. Jalili B, Rezaeian A, Jalili P, Ommi F, Ganji DD. Numerical modeling of magnetic field impact on the thermal behavior of a microchannel heat sink. Case Studies in Thermal Engineering. 2023; 45: 102944. Doi: 1016/j.csite.2023.102944
  15. Roy G, Nguyen CT, Lajoie P-R. Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids. Superlattices and Microstructures. 2004; 35(3-6): 497-511. Doi: 1016/j.spmi.2003.09.011
  16. Heris SZ, Etemad SG, Esfahany MN. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. International communications in heat and mass transfer. 2006; 33(4): 529-35. Doi: 1016/j.icheatmasstransfer.2006.01.005
  17. Jalili P, Sharif Mousavi S, Jalili B, Pasha P, Ganji DD. Thermal evaluation of MHD Jeffrey fluid flow in the presence of a heat source and chemical reaction. International Journal of Modern Physics B. 2023: 2450113. Doi: 1142/S0217979224501133
  18. He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. International journal of heat and mass transfer. 2007; 50(11-12): 2272-81. Doi: 1016/j.ijheatmasstransfer.2006.10.024
  19. Abu-Nada E. Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step. International Journal of Heat and Fluid Flow. 2008; 29(1): 242-9. Doi: 1016/j.ijheatfluidflow.2007.07.001
  20. Manninen M, Taivassalo V, Kallio S. On the mixture model for multiphase flow. VTT Technical Research Centre of Finland. ISBN (Print): 951-38-4946-5
  21. Hedayati N, Ramiar A, Larimi M. Investigating the effect of external uniform magnetic field and temperature gradient on the uniformity of nanoparticles in drug delivery applications. Journal of Molecular Liquids. 2018; 272: 301-12. Doi: 1016/j.molliq.2018.09.031
  22. Alipanah M, Hafttananian M, Hedayati N, Ramiar A, Alipanah M. Microfluidic on-demand particle separation using induced charged electroosmotic flow and magnetic field. Journal of Magnetism and Magnetic Materials. 2021; 537: 168156. Doi: 1016/j.jmmm.2021.168156
  23. Rouson DW, Eaton JK. On the preferential concentration of solid particles in turbulent channel flow. Journal of Fluid Mechanics. 2001; 428: 149-69. Doi: 1017/S0022112000002627
  24. Behzadmehr A, Saffar-Avval M, Galanis N. Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach. International journal of heat and fluid flow. 2007; 28(2): 211-9. Doi: 1016/j.ijheatfluidflow.2006.04.006
  25. Mirmasoumi S, Behzadmehr A. Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model. Applied Thermal Engineering. 2008; 28(7): 717-27. Doi: 1016/j.applthermaleng.2007.06.019
  26. Akbarinia A, Laur R. Investigating the diameter of solid particles effects on a laminar nanofluid flow in a curved tube using a two phase approach. International Journal of Heat and Fluid Flow. 2009; 30(4): 706-14. Doi: 1016/j.ijheatfluidflow.2009.03.002
  27. Kurowski L, Chmiel-Kurowska K, Thulliea J. Numerical simulation of heat transfer in nanofluids. Computer Aided Chemical Engineering. 26: Elsevier; 2009. p. 967-72. Doi: 1016/S1570-7946(09)70161-0
  28. Lotfi R, Saboohi Y, Rashidi A. Numerical study of forced convective heat transfer of nanofluids: comparison of different approaches. International Communications in Heat and Mass Transfer. 2010; 37(1): 74-8. Doi: 1016/S1570-7946(09)70161-0
  29. Kalteh M, Abbassi A, Saffar-Avval M, Harting J. Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel. International journal of heat and fluid flow. 2011; 32(1): 107-16. Doi: 1016/j.ijheatfluidflow.2010.08.001
  30. Akbari M, Galanis N, Behzadmehr A. Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer. International Journal of Thermal Sciences. 2011; 50(8): 1343-54. Doi: 1016/j.ijthermalsci.2011.03.008
  31. Bianco V, Nardini S, Manca O. Enhancement of heat transfer and entropy generation analysis of nanofluids turbulent convection flow in square section tubes. Nanoscale research letters. 2011; 6: 1-12. Doi: 1186/1556-276X-6-252
  32. Rahimi-Esbo M, Ranjbar A, Ramiar A, Rahgoshay M, Arya A. Numerical study of the turbulent forced convection jet flow of nanofluid in a converging duct. Numerical Heat Transfer, Part A: Applications. 2012; 62(1): 60-79. Doi: 1080/10407782.2012.677368
  33. Wang H, Chen Z, Gao J. Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks. Applied Thermal Engineering. 2016; 107: 870-9. Doi: 1016/j.applthermaleng.2016.07.039
  34. Alrashed AA, Akbari OA, Heydari A, Toghraie D, Zarringhalam M, Shabani GAS, Seifi AR, Goodarzi M. The numerical modeling of water/FMWCNT nanofluid flow and heat transfer in a backward-facing contracting channel. Physica B: Condensed Matter. 2018; 537: 176-83. Doi: 1016/j.physb.2018.02.022
  35. Sandeep N, Malvandi A. Enhanced heat transfer in liquid thin film flow of non-Newtonian nanofluids embedded with graphene nanoparticles. Advanced Powder Technology. 2016; 27(6): 2448-56. Doi: 1016/j.apt.2016.08.023
  36. Sandeep N, Sharma RP, Ferdows M. Enhanced heat transfer in unsteady magnetohydrodynamic nanofluid flow embedded with aluminum alloy nanoparticles. Journal of Molecular Liquids. 2017; 234: 437-43. Doi: 1016/j.molliq.2017.03.051
  37. Daniel YS, Aziz ZA, Ismail Z, Salah F. Impact of thermal radiation on electrical MHD flow of nanofluid over nonlinear stretching sheet with variable thickness. Alexandria Engineering Journal. 2018; 57(3): 2187-97. Doi: 1016/j.aej.2017.07.007
  38. Maleki H, Safaei MR, Alrashed AA, Kasaeian A. Flow and heat transfer in non-Newtonian nanofluids over porous surfaces. Journal of Thermal Analysis and Calorimetry. 2019; 135: 1655-66. Doi: 1007/s10973-018-7277-9
  39. Lin Y, Zheng L, Zhang X, Ma L, Chen G. MHD pseudo-plastic nanofluid unsteady flow and heat transfer in a finite thin film over stretching surface with internal heat generation. International Journal of Heat and Mass Transfer. 2015; 84: 903-11. Doi: 1016/j.ijheatmasstransfer.2015.01.099
  40. Darbari B, Ayani MB. Heat transfer and deposition analysis of CuO-Water nanofluid inside a baffled channel: Two-phase Eulerian–Lagrangian method. Journal of the Taiwan Institute of Chemical Engineers. 2023: 104827. Doi: 1016/j.jtice.2023.104827
  41. Wen D, Zhang L, He Y. Flow and migration of nanoparticle in a single channel. Heat and Mass Transfer. 2009; 45: 1061-7. Doi: 1007/s00231-009-0479-8
  42. Soltani M, Ahmadi G. On particle adhesion and removal mechanisms in turbulent flows. Journal of Adhesion Science and Technology. 1994; 8(7): 763-85. Doi: 1163/156856194X00799
  43. Brach RM, Dunn PF. A mathematical model of the impact and adhesion of microsphers. Aerosol Science and Technology. 1992; 16(1): 51-64. Doi: 1080/02786829208959537
  44. Ounis H, Ahmadi G, McLaughlin JB. Brownian diffusion of submicrometer particles in the viscous sublayer. Journal of Colloid and Interface Science. 1991; 143(1): 266-77. Doi: 1016/0021-9797(91)90458-K
  45. Husain A, Kim K-Y, editors. Microchannel heat sinking: analysis and optimization. Fluid Machinery and Fluid Mechanics: 4th International Symposium (4th ISFMFE); 2009: Springer. Doi: 10.1007/978-3-540-89749-1_25
  46. Xia G, Chai L, Wang H, Zhou M, Cui Z. Optimum thermal design of microchannel heat sink with triangular reentrant cavities. Applied Thermal Engineering. 2011; 31(6-7): 1208-19. Doi: 1016/j.applthermaleng.2010.12.022
  47. Kim D, Kwon Y, Cho Y, Li C, Cheong S, Hwang Y, Lee J, Hong D, Moon S. Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Current Applied Physics. 2009; 9(2): e119-e23. Doi: 1016/j.cap.2008.12.047
  48. Bali R, Awasthi U. Effect of a magnetic field on the resistance to blood flow through stenotic artery. Applied Mathematics and Computation. 2007; 188(2): 1635-41. Doi: 1016/j.amc.2006.11.019