Document Type : Original Article

Authors

Persian Gulf Petrochemical Industries Co., Pars Petrochemical, EB/SM Laboratory, Asalouye, Iran

Abstract

In this article, the concentration of some volatile organic compounds (VOCs) in the hot oil sample of the Pars petrochemical ethylbenzene unit is presented. Pars Petrochemical is one of the largest producers of ethylbenzene in the Middle East. The hot oil impurities that were analyzed were benzene and toluene (BT). The hot oil sample was taken in May 2023 at a special sampling station on the site. The presence of BT is related to its intensity in the hot oil sample. The Multiple Headspace Extraction (MHE) method was used for the extraction and quantitative analysis of BT followed by gas chromatography (GC) analysis. A GC with flame ionization detector (FID) instrument was used for the analysis of BT. This method offers advantages for the analysis of volatile pollutants because it eliminates the use of organic solvents and various sample purification steps that often lead to erroneous results. The MHE method is independent of standard concentration and could be used in a wide range of BT in Hot Oil without calibration for different ranges. Also, linearity, detection limits, and accuracy were looked into as part of the validation process. The limit of detection (LOD) and limit of quantification (LOQ), respectively, were between 0.05 - 0.56, and 0.17 - 1.9 mg/kg. Less than 13.95 percent (n= 15) was the relative standard deviation statistically. A quick and easy method for detecting BT in hot oil samples was used for the first time. This work will be a step forward for the detection of other aromatic and cyclic hydrocarbons in hot oil samples.

Keywords

Main Subjects

  1. Giwa A, Chalermthai B, Shaikh B, Taher H. Green dispersants for oil spill response: A comprehensive review of recent advances. Marine Pollution Bulletin. 2023; 193: 115118. Doi: 10.1016/j.marpolbul.2023.115118
  2. Ayoola A, Ogunlade S, Vershima D, Olomukoro O, Sonia N. Synthetic Heat Transfer Fluids: Alternative to Steam in Chemical Industries – A Review. In: Ayeni AO, Sanni SE, Oranusi SU, editors. Bioenergy and Biochemical Processing Technologies: Recent Advances and Future Demands. Cham: Springer International Publishing; 2022. p. 365-75. ISBN: 978-3-030-96720-8, 978-3-030-96721-5
  3. Deng Y, Jiang Y, Liu J. Low-melting-point liquid metal convective heat transfer: A review. Applied Thermal Engineering. 2021; 193: 117021. Doi: 10.1016/j.applthermaleng.2021.117021
  4. Ravi Kumar K, Krishna Chaitanya NVV, Sendhil Kumar N. Solar thermal energy technologies and its applications for process heating and power generation – A review. Journal of Cleaner Production. 2021; 282: 125296. Doi: 10.1016/j.jclepro.2020.125296
  5. Deng Y, Jiang Y, Liu J. Liquid metal technology in solar power generation - Basics and applications. Solar Energy Materials and Solar Cells. 2021; 222: 110925. Doi: 10.1016/j.solmat.2020.110925
  6. Jacob J, Preetha P, Thiruthi Krishnan S. Review on natural ester and nanofluids as an environmental friendly alternative to transformer mineral oil. IET Nanodielectrics. 2020; 3(2): 33-43. Doi: 10.1049/iet-nde.2019.0038
  7. Agrawal KK, Misra R, Agrawal GD. Improving the thermal performance of ground air heat exchanger system using sand-bentonite (in dry and wet condition) as backfilling material. Renewable Energy. 2020; 146: 2008-23. Doi: 10.1016/j.renene.2019.08.044
  8. Krishna Y, Faizal M, Saidur R, Ng KC, Aslfattahi N. State-of-the-art heat transfer fluids for parabolic trough collector. International Journal of Heat and Mass Transfer. 2020; 152: 119541. Doi: https://doi.org/10.1016/j.ijheatmasstransfer.2020.119541
  9. Okonkwo EC, Wole-Osho I, Almanassra IW, Abdullatif YM, Al-Ansari T. An updated review of nanofluids in various heat transfer devices. Journal of Thermal Analysis and Calorimetry. 2021; 145(6): 2817-72. Doi: 10.1007/s10973-020-09760-2
  10. Kazem HA, Al-Waeli AA, Chaichan MT, Sopian K, Ahmed A-A, Wan Nor Roslam WI. Enhancement of photovoltaic module performance using passive cooling (Fins): A comprehensive review. Case Studies in Thermal Engineering. 2023; 49: 103316. Doi: 10.1016/j.csite.2023.103316
  11. Wu W, Wang S, Wu W, Chen K, Hong S, Lai Y. A critical review of battery thermal performance and liquid based battery thermal management. Energy Conversion and Management. 2019; 182: 262-81. Doi: 10.1016/j.enconman.2018.12.051
  12. Sun J, Zhang R, Wang M, Zhang J, Qiu S, Tian W, Su GH. Multi-objective optimization of helical coil steam generator in high temperature gas reactors with genetic algorithm and response surface method. Energy. 2022; 259: 124976. Doi: 10.1016/j.energy.2022.124976
  13. Jouhara H, Nieto N, Egilegor B, Zuazua J, González E, Yebra I, Igesias A, Delpech B, Almahmoud S, Brough D, Malinauskaite J, Vlasopoulos A, Hill M, et al. Waste heat recovery solution based on a heat pipe heat exchanger for the aluminium die casting industry. Energy. 2023; 266: 126459. Doi: 10.1016/j.energy.2022.126459
  14. Ismanto A, Hadibarata T, Widada S, Indrayanti E, Ismunarti DH, Safinatunnajah N, Kusumastuti W, Dwiningsih Y, Alkahtani J. Groundwater contamination status in Malaysia: level of heavy metal, source, health impact, and remediation technologies. Bioprocess and Biosystems Engineering. 2023; 46(3): 467-82. Doi: 10.1007/s00449-022-02826-5
  15. Zhu J, Yin G. Catalytic Transformation of the Furfural Platform into Bifunctionalized Monomers for Polymer Synthesis. ACS Catalysis. 2021; 11(15): 10058-83. Doi: 10.1021/acscatal.1c01989
  16. Zhang D, Zhang Y, Wang Z, Zheng Y, Zheng X, Gao L, Wang C, Yang C, Tang H, Li Y. Biodegradable film enabling visible light excitation of Hexanuclear Europium(Ⅲ) complex for various applications. Journal of Luminescence. 2021; 229: 117706. Doi: 10.1016/j.jlumin.2020.117706
  17. Wise SA, Rodgers RP, Reddy CM, Nelson RK, Kujawinski EB, Wade TL, Campiglia AD, Liu Z. Advances in chemical analysis of oil spills since the deepwater horizon disaster. Critical Reviews in Analytical Chemistry. 2023; 53(8): 1638-97. Doi: 10.1080/10408347.2022.2039093
  18. Chacón-Patiño ML, Mase C, Maillard JF, Barrère-Mangote C, Dayton DC, Afonso C, Giusti P, Rodgers RP. Petroleomics Approach to Investigate the Composition of Upgrading Products from Pyrolysis Bio-Oils as Determined by High-Field FT-ICR MS. Energy & Fuels. 2023; 37(21): 16612-28. Doi: 10.1021/acs.energyfuels.3c02599
  19. Momen N, Pahlavanzadeh H. Investigating the Effect of Catalyst and Deep Eutectic Co-solvent on Purity of Biodiesel Produced from Linseed Oil. Iranica Journal of Energy & Environment. 2024; 15(2): 187-93. Doi: 10.5829/ijee.2024.15.02.08
  20. Ma G, Xiao H, Wei X, Xiao A, Sun X, Gao X. Source and composition analysis of petroleum hydrocarbons in the refinery circulating water. Environmental Science and Pollution Research. 2023; 30(9): 24470-8. Doi: 10.1007/s11356-022-23922-9
  21. Hoyt D, Raun LH. Measured and estimated benzene and volatile organic carbon (VOC) emissions at a major U.S. refinery/chemical plant: Comparison and prioritization. Journal of the Air & Waste Management Association. 2015; 65(8): 1020-31. Doi: 10.1080/10962247.2015.1058304
  22. Stilo F, Segura Borrego MDP, Bicchi C, Battaglino S, Callejón Fernadez RM, Morales ML, Reichenbach SE, Mccurry J, Peroni D, Cordero C. Delineating the extra-virgin olive oil aroma blueprint by multiple headspace solid phase microextraction and differential-flow modulated comprehensive two-dimensional gas chromatography. Journal of Chromatography A. 2021; 1650: 462232. Doi: 10.1016/j.chroma.2021.462232
  23. Lin F, Li J-g, Chai X-S, Zhang Z-b, Liu M. Determination of water distribution in sludge by a multiple headspace extraction analytical technique. Journal of Chromatography A. 2020; 1628: 461449. Doi: 10.1016/j.chroma.2020.461449
  24. Squara S, Caratti A, Fina A, Liberto E, Spigolon N, Genova G, Castello G, Cincera I, Bicchi C, Cordero C. Artificial Intelligence decision-making tools based on comprehensive two-dimensional gas chromatography data: the challenge of quantitative volatilomics in food quality assessment. Journal of Chromatography A. 2023; 1700: 464041. Doi: 10.1016/j.chroma.2023.464041
  25. Barani F, Dell'Amico N, Griffone L, Santoro M, Tarabella C. Determination of volatile organic compounds by headspace trap. Journal of chromatographic science. 2006; 44(10): 625-30. Doi: 10.1093/chromsci/44.10.625
  26. Kalčíková G, Zupančič M, Levei EA, Miclean M, Englande AJ, Žgajnar Gotvajn A. Application of multiple toxicity tests in monitoring of landfill leachate treatment efficiency. Environmental Monitoring and Assessment. 2015; 187(8): 489. Doi: 10.1007/s10661-015-4670-8
  27. Heydari M, Tabatabaie T, Amiri F, Hashemi SE. BTEXS Removal From Aqueous Phase by MCM-41 Green Synthesis Using Rice Husk Silica. Iranica Journal of Energy & Environment. 2023; 14(4): 321-35. Doi: 10.5829/ijee.2023.14.04.02
  28. Heydari M, Tabatabaie T, Amiri F, Hashemi SE. Comparative study of green synthesis of nanoparticles for removal of oily industrial wastewater by Taguchi method. International Journal of Environmental Science and Technology. 2023. Doi: 10.1007/s13762-023-05106-1
  29. Heydari M, Tabatabaie T, Amiri F, Hashemi SE. Investigating photocatalytic removal of BTEXS in aqueous solution using a green synthesis of ALV-TiO2/Co-MCM-41 nanocomposite under visible light. Biomass Conversion and Biorefinery. 2023. Doi: 10.1007/s13399-023-04647-2
  30. Alonso ML, San Román I, Bartolomé L, Monfort N, Alonso RM, Ventura R. Multiple headspace solid-phase microextraction (MHS-SPME) methodology applied to the determination of volatile metabolites of plasticizers in human urine. Microchemical Journal. 2022; 180: 107567. Doi: 10.1016/j.microc.2022.107567
  31. Sühring R, Smith A, Emerson H, Doran D, Mellor P, Kirby MF, Christie B. Qualification of oil-spill treatment products – Adopting the Baffled Flask Test for testing of dispersant efficacy in the UK. Marine Pollution Bulletin. 2018; 129(2): 609-14. Doi: 10.1016/j.marpolbul.2017.10.038
  32. Lörchner C, Horn M, Berger F, Fauhl-Hassek C, Glomb MA, Esslinger S. Quality control of spectroscopic data in non-targeted analysis – Development of a multivariate control chart. Food Control. 2022; 133: 108601. Doi: 10.1016/j.foodcont.2021.108601
  33. Gonçalves C, Cubero-Leon E, Stroka J. Determination of tropane alkaloids in cereals, tea and herbal infusions: Exploiting proficiency testing data as a basis to derive interlaboratory performance characteristics of an improved LC-MS/MS method. Food Chemistry. 2020; 331: 127260. Doi: 10.1016/j.foodchem.2020.127260
  34. de Oliveira LMA, dos Santos VB, da Silva EKN, Lopes AS, Dantas-Filho HA. An environment-friendly spot test method with digital imaging for the micro-titration of citric fruits. Talanta. 2020; 206: 120219. Doi: 10.1016/j.talanta.2019.120219
  35. Pascale R, Bianco G, Calace S, Masi S, Mancini IM, Mazzone G, Caniani D. Method development and optimization for the determination of benzene, toluene, ethylbenzene and xylenes in water at trace levels by static headspace extraction coupled to gas chromatography–barrier ionization discharge detection. Journal of Chromatography A. 2018; 1548: 10-8. Doi: 10.1016/j.chroma.2018.03.018
  36. Salemi A, Rasoolzadeh R, Nejad MM, Vosough M. Ultrasonic assisted headspace single drop micro-extraction and gas chromatography with nitrogen-phosphorus detector for determination of organophosphorus pesticides in soil. Analytica Chimica Acta. 2013; 769: 121-6. Doi: 10.1016/j.aca.2013.01.054
  37. Culbreath CJ. Quantification of Volatile Residuals in Polydioxanone by Gas Chromatography: Method Development, Validation and Implementation. 2016. Clemson University, MS Thesis. Available at: https://tigerprints.clemson.edu/all_theses/3144
  38. Lehner AF, Buchweitz JP. Benefits and Malefits of Solvent Vent Mode in Combination with Tandem Mass Spectrometry for Static Headspace Analysis of Organic Solvents by Gas Chromatography. Chromatographia. 2022; 85(4): 315-31. Doi: 10.1007/s10337-022-04135-1
  39. Stilo F, Cordero C, Sgorbini B, Bicchi C, Liberto E. Highly Informative Fingerprinting of Extra-Virgin Olive Oil Volatiles: The Role of High Concentration-Capacity Sampling in Combination with Comprehensive Two-Dimensional Gas Chromatography. Separations. 2019; 6(3): 34. Doi: 10.3390/separations6030034
  40. Ezquerro Ó, Pons B, Tena MaT. Multiple headspace solid-phase microextraction for the quantitative determination of volatile organic compounds in multilayer packagings. Journal of Chromatography A. 2003; 999(1): 155-64. Doi: 10.1016/S0021-9673(02)01524-8
  41. Cheng Y, Xi C, Dai S, Ji C, Collu M, Li M, Yuan Z, Incecik A. Wave energy extraction and hydroelastic response reduction of modular floating breakwaters as array wave energy converters integrated into a very large floating structure. Applied Energy. 2022; 306: 117953. Doi: 10.1016/j.apenergy.2021.117953
  42. Sridhar A, Ponnuchamy M, Kumar PS, Kapoor A, Vo D-VN, Prabhakar S. Techniques and modeling of polyphenol extraction from food: a review. Environmental Chemistry Letters. 2021; 19(4): 3409-43. Doi: 10.1007/s10311-021-01217-8
  43. Gudat AE, Brillante SM. Multiple Headspace Extraction–Capillary Gas Chromatography for the Quantitative Determination of Volatiles in Solid Matrices. Agilent Application Note, Publication number 5965-0978E. 2000. Available at:: http://www.youngin.com/application/AN-0908-0103EN.pdf
  44. Shen W, Wang C, Firor R. Multiple headspace extraction for the quantitative determination of residual monomer and solvents in polystyrene pellets using the Agilent 7697A Headspace Sampler. Agilent Technologies Application Note. 2012.
  45. Moreno-González D, Castilla-Fernández D, Vogel P, Niu G, Brandt S, Drees C, García-Reyes JF, Molina-Díaz A, Franzke J. Evaluation of a novel controlled-atmosphere flexible microtube plasma soft ionization source for the determination of BTEX in olive oil by headspace-gas chromatography/mass spectrometry. Analytica Chimica Acta. 2021; 1179: 338835. Doi: 10.1016/j.aca.2021.338835
  46. Heydari M, Tabatabaie T, Amiri F, Hashemi SE. Evaluation of Co-MCM-41 Nanocatalyst for BTEXS Removal in Industrial Wastewater Samples by Headspace Coupled with Gas Chromatography. Water, Air, & Soil Pollution. 2023; 234(12): 751. Doi: 10.1007/s11270-023-06715-9
  47. Qi B, Nicolaï J, Smits A, De Vocht T, Deferm N, Van Brantegem P, Allegaert K, Annaert P. A sensitive liquid chromatography method for analysis of propofol in small volumes of neonatal blood. Journal of Clinical Pharmacy and Therapeutics. 2020; 45(1): 128-33. Doi: 10.1111/jcpt.13038
  48. Nicolaou AG, Stavrou IJ, Louppis AP, Constantinou MS, Kapnissi-Christodoulou C. Application of an ultra-performance liquid chromatography-tandem mass spectrometric method for the detection and quantification of cannabis in cerumen samples. Journal of Chromatography A. 2021; 1642: 462035. Doi: 10.1016/j.chroma.2021.462035
  49. Udomkun P, Rungpichayapichet P, Phuangcheen N, Innawong B. Rapid determination of fructooligosaccharide in solar-dried banana syrup by using near-infrared spectroscopy. Journal of Food Measurement and Characterization. 2021; 15(4): 3397-407. Doi: 10.1007/s11694-021-00911-z
  50. Abdallah OI, Ahmed NS. Development of a Vortex-Assisted Dispersive Liquid-Liquid Microextraction (VA-DLLME) and LC-MS/MS Procedure for Simultaneous Determination of Fipronil and its Metabolite Fipronil Sulfone in Tomato Fruits. Food Analytical Methods. 2019; 12(10): 2314-25. Doi: 10.1007/s12161-019-01562-z
  51. Alam N, Ravikumar CH, Sreeramareddygari M, Somasundrum M, Surareungchai W. Label-free ultra-sensitive colorimetric detection of hepatitis E virus based on oxidase-like activity of MnO2 nanosheets. Analytical and Bioanalytical Chemistry. 2023; 415(4): 703-13. Doi: 10.1007/s00216-022-04461-1
  52. Huang Y-F, Liao P-L, Lin Y-J, Huang S-H, Samuel Wu Y-H, Teng C-F, Yang D-J. Assessment of various conditions for the simultaneous determination of US EPA and EU priority PAHs in coffee samples and their PAHs consumption risk. Food Research International. 2023; 169: 112947. Doi: 10.1016/j.foodres.2023.112947
  53. Fornari F, Bianchi F, Riboni N, Casoli F, Bacchi A, Mazzeo PP, Pelagatti P, Careri M. Metal-organic framework-based magnetic dispersive micro-solid-phase extraction for the gas chromatography–mass spectrometry determination of polycyclic aromatic compounds in water samples. Journal of Chromatography A. 2022; 1671: 463010. Doi: 10.1016/j.chroma.2022.463010
  54. AlSalka Y, Karabet F, Hashem S. Development and optimisation of quantitative analytical method to determine BTEX in environmental water samples using HPLC-DAD. Analytical Methods. 2010; 2(8): 1026-35. Doi: 10.1039/C0AY00285B
  55. Biagini D, Lomonaco T, Ghimenti S, Onor M, Bellagambi FG, Salvo P, Di Francesco F, Fuoco R. Using labelled internal standards to improve needle trap micro-extraction technique prior to gas chromatography/mass spectrometry. Talanta. 2019; 200: 145-55. Doi: 10.1016/j.talanta.2019.03.046
  56. Wei Q, Cui H, Hu Y, Li J, Yue S, Tang C, Zhao Q, Yu Y, Li H, Qin Y, Yang Y, Zhang J. Comparative characterization of Taihe silky chicken and Cobb chicken using LC/MS-based lipidomics and GC/MS-based volatilomics. LWT. 2022; 163: 113554. Doi: 10.1016/j.lwt.2022.113554