Comparative Exergy, Economic and Environmental Analysis of Parabolic Trough Collector and Linear Fresnel Reflector

Document Type : ACEC-2023

Authors

Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

In recent years, the use of renewable energy sources and investigation on renewable energy have significantly grown. In this research, parabolic trough and linear Fresnel collectors, which are widely used in the field of solar energy, have been investigated from the point of view of exergy. First, the energy balance equations for different components of the collector were solved using numerical methods and the temperature distribution in each component of the collector was obtained. Then the values of exergy destruction in each component of the system were calculated. The comparison of the results obtained in the present work with the results of the previous research showed a good agreement. The results showed that the exergy efficiency in the parabolic trough collector is approximately 1.5 times that of the linear Fresnel reflector. Also, changes in exergy efficiency, exergy destruction of the whole collector, output exergy cost and CO2 emission with increasing solar radiation intensity and fluid mass flow rate for both collectors have been compared and investigated.

Keywords

Main Subjects


  1. Singh, N., Kaushik, S. and Misra, R., 2000. Exergetic analysis of a solar thermal power system, Renewable Energy, 19(1-2), pp. 135-143. Doi: 10.1016/S0960-1481(99)00027-0
  2. Tyagi, S., Wang, S., Singhal, M., Kaushik, S. and Park, S., 2007. Exergy analysis and parametric study of concentrating type solar collectors, International Journal of Thermal Sciences, 46(12), pp. 1304-1310. Doi: 10.1016/j.ijthermalsci.2006.11.010
  3. Reddy, V. S., Kaushik, S. and Tyagi, S., 2012. Exergetic analysis and performance evaluation of parabolic trough concentrating solar thermal power plant (PTCSTPP), Energy, 39(1), pp. 258-273. Doi: 10.1016/j.energy.2012.01.023
  4. Kulkarni, H., 2016. Performance of Closed Cylindrical Parabolic Trough Collector for Solar Thermal Application, Iranian (Iranica) Journal of Energy & Environment, 7(3), pp. 226-232. Doi: 10.5829/idosi.ijee.2016.07.03.03
  5. Bellos, E., Tzivanidis, C. and Antonopoulos, K. A., 2017. A detailed working fluid investigation for solar parabolic trough collectors, Applied Thermal Engineering, 114, pp. 374-386. Doi: 10.1016/j.applthermaleng.2016.11.201
  6. Allouhi, A., Amine, M. B., Saidur, R., Kousksou, T. and Jamil, A., 2018. Energy and exergy analyses of a parabolic trough collector operated with nanofluids for medium and high temperature applications, Energy Conversion and Management, 155, pp. 201-217. Doi: 10.1016/j.enconman.2017.10.059
  7. Bellos, E., Tzivanidis, C. and Papadopoulos, A., 2018. Optical and thermal analysis of a linear Fresnel reflector operating with thermal oil, molten salt and liquid sodium, Applied Thermal Engineering, 133, pp. 70-80. Doi: 10.1016/j.applthermaleng.2018.01.038
  8. Roostaee, A. and Ameri, M., 2022. A comparative study of different optimised mirrors layouts of Linear Fresnel concentrators on annual energy and exergy efficiencies, International Journal of Ambient Energy, 43(1), pp. 2627-2644. Doi: 10.1080/01430750.2020.1758780
  9. López, J. C., Escobar, A., Cárdenas, D. A. and Restrepo, Á., 2021. Parabolic trough or linear fresnel solar collectors? An exergy comparison of a solar-assisted sugarcane cogeneration power plant, Renewable Energy, 165, pp. 139-150. Doi: 10.1016/j.renene.2020.10.138
  10. Mahmoudi, M., Mirzaee, I. and Khalilian, M., 2024. Energy and Exergy Study of a Nanofluid-based Solar System Integrated with a Quadruple Effect Absorption Cycle and Thermoelectric Generator, Iranica Journal of Energy & Environment, 15(1), pp. 80-90. Doi: 10.5829/ijee.2024.15.01.08
  11. Duffie, J. A., Beckman, W. A. and Blair, N., 2020. Solar engineering of thermal processes, photovoltaics and wind. John Wiley & Sons. ISSN: 1119540283.
  12. Holman, J. P., 1986. Heat transfer. McGraw Hill.
  13. Bergman, T. L., Bergman, T. L., Incropera, F. P., Dewitt, D. P. and Lavine, A. S., 2011. Fundamentals of heat and mass transfer. John Wiley & Sons. ISSN: 0470501979.
  14. Hepbasli, A., 2008. A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future, Renewable and Sustainable Energy Reviews, 12(3), pp. 593-661. Doi: 10.1016/j.rser.2006.10.001
  15. Moran, M. J., Shapiro, H. N., Boettner, D. D. and Bailey, M. B., 2010. Fundamentals of engineering thermodynamics. John Wiley & Sons. ISSN: 0470495901.
  16. Petela, R., 2003. Exergy of undiluted thermal radiation, Solar Energy, 74(6), pp. 469-488. Doi: 10.1016/S0038-092X(03)00226-3
  17. Cengel, Y. A., Boles, M. A. and Kano─člu, M., 2011. Thermodynamics: an engineering approach. McGraw-hill New York.
  18. Moosavian, S. F., Hajinezhad, A., Fattahi, R. and Shahee, A., 2023. Evaluating the effect of using nanofluids on the parabolic trough collector's performance, Energy Science & Engineering, 11(10), pp. 3512-3535. Doi: 10.1002/ese3.1537
  19. Jabbar, H. A., Hachim, D. M. and Alwan, K. J., 2023.Heat transfer fluids in parabolic trough collector (PTC): A review study, AIP Conference Proceedings: AIP Publishing, 6–7 June 2022, Istanbul, Turkey 2776(1), 050011. Doi: 10.1063/5.0135997
  20. Barbón, A., Sánchez-Rodríguez, J., Bayón, L. and Bayón-Cueli, C., 2019. Cost estimation relationships of a small scale linear Fresnel reflector, Renewable Energy, 134, pp. 1273-1284. Doi: 10.1016/j.renene.2018.09.060