Document Type : Original Article

Authors

1 Department of Mechanical Engineering, Federal University of Technology, Owerri, Nigeria

2 Department of Chemistry, Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu Alike, Ikwo, Nigeria

Abstract

Various fiber-matrix combinations were used to create biodegradable composites using sugar cane bagasse (SCB) fiber and a polyester resin (PES) matrix. SEM, FTIR, mechanical testing, thermogravimetric analysis (TGA), and the method of soil burial were employed to assess the effects of the fiber content (9-54 wt%), PLA (1-5.5 wt%), starch (1-5.5 wt%), and fiber treatment on the morphology of the surface, flexural, thermal, tensile as well as biodegradable qualities of polyester/sugar cane bagasse fiber biocomposites. The outcomes demonstrated that the optimal tensile strength of biocomposites, impact, and Flexural capabilities were attained by the 37 wt% treated sugar cane bagasse fibers. Tensile, flexural, and impact strength measurements for the 9, 18, 27, 37, 45, and 54 wt% biocomposites, respectively, ranged from 10.21 to 18.00, 21.33 to 28.12, and 12.21 to 15.67 Mpa. The results show that sugarcane bagasse-polyester composites demonstrated acceptable mechanical and multifunctional properties. This portrays the effectiveness of Sugarcane bagasse as reinforcement for Polyester matrix and its potential for eco-friendly fabrication of components.

Keywords

Main Subjects

  1. Li, H., Yan, S., Mao, H., Ji, J., Xu, M., Zhang, S., Wang, J., Liu, Y. and Sun, B, 2020. Insights into maize starch degradation by sulfuric acid from molecular structure changes, Carbohydrate Polymers, 229, pp.115542. Doi: 10.1016/j.carbpol.2019.115542
  2. Obasi, H. C., 2015. Peanut husk filled polyethylene composites: effects of filler content and compatibilizer on properties, Journal of Polymers, 189289, pp.1- 9. Doi: 10.1155/2015/189289
  3. Yu, D., Arvinder, G., Hitoshi, T., Hazim, J. H., Antonio, N. N. and Kin-Tak, L., 2014. Polylactic acid (PLA) biocomposites reinforced with coir fibres: Evaluation of mechanical performance and multifunctional properties, Composites: Part A. 63, pp.76–84. Doi: 10.1016/j.compositesa.2014.04.003
  4. Teixeira, S., Arenales, A., Souza, A., da Silva, M., Renata, P., Angel, A., and Davi, F., 2015. Sugarcane Bagasse: Applications for Energy Production and Ceramic Materials, The Journal of Solid Waste Technology and Management, 41, pp.229-238. Doi: 10.5276/JSWTM.2015.229
  5. Rahimi, K. S. M., Brown, R. J., Tsuzuki, T. and Rainey, T. J., 2016. A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods, Advances in Natural Sciences: Nanoscience and Nanotechnology. Doi: 10.1088/2043-6262/7/3/035004
  6. Eyad, S. A., Khalaf, H., Farag, E. M., 2020. Mechanical and physical characterizations of styrene butadiene rubber: bagasse composites, Journal of Rubber Research, 23(1), pp.23-31. Doi: 10.1007/s42464-019-00032-9
  7. Teboho, M., 2018. Sugarcane bagasse and cellulose composites. Doi: 10.5772/intechopen.71497
  8. Teixeira, S. R., de Souza, A.E., Peña, A. F. V., de Lima, R. G. and Muguel, A. G., 2011. Use of charcoal and partially pirolysed biomaterial in fly ash to produce briquettes: Sugarcane bagasse, Alternative Fuel, Doi: 10.5772/20505
  9. Obiukwu, O. O., Uchechukwu, M. N. and Uchechukwu, T., 2020. Thermal, Abrasion and Dynamic-Mechanical Properties of Sugar Cane Bagasse Reinforced Polyester Resin Biocomposites, Iranian (Iranica) Journal of Energy and Environment, 11(3), pp.186-192. Doi:10.5829/IJEE.2020.11.03.02
  10. Obiukwu, O. O., and Igboekwe, J., 2020. Mechanical, Morphological Properties and Chemical Resistance of Filled Rattan Wastes Powder Epoxy Composites, Iranian (Iranica) Journal of Energy and Environment, 11(4), pp. 320-329. Doi: 10.5829/ijee.2020.11.04.10
  11. Slavutsky, A. M. and Bertuzzi M. A., 2014. Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse, Carbohydrate Polymers, 110, pp. 53-61. Doi: 10.1016/j.carbpol.2014.03.049
  12. Motaung, T. E., Linganiso, L. Z., John, M. and Anandijwala, R. D., 2015. The effect of silane treated sugar cane bagasse on mechanical, thermal and crystallization studies of recycled polypropylene, Materials Sciences and Applications, 6(08), pp. 724-733. Doi: 10.4236/msa.2015.68074
  13. Motaung, T., Mochane, M., Makhetha, T., Motloung, S., Mokhothu, T., Mokhena, T. and Moji, R., 2015. Effect of mechanical treatment on morphology and thermal and mechanical properties of sugar cane bagasse–low-density polyethylene composites, Polymer Composites, 38, pp. 1497-1503. Doi: 10.1002/pc.23717
  14. Motaung, T. E. and Mokhena, T. C., 2015. Effects of mechanical fibrillation on cellulose reinforced poly (ethylene oxide), Materials Sciences and Applications, 6(08), pp. 713-723. Doi: 10.4236/MSA.2015.68073
  15. Motaung, T. E., Mochane, M. J. and Linganiso Z. L., 2017. In situ Polymerization of Nylon-Cellulose Nano Composite, Polymer Science, 3(1:2), pp. 1-8. Doi: 10.4172/2471-9935.100017
  16. Oliveira, F.B., Gardrat, C., Enjalbal, C., Frollini, E., and Castellan, A., 2008. Phenol–furfural resins to elaborate composites reinforced with sisal fibers—Molecular analysis of resin and properties of composites, Journal of Applied Polymer Science, 109, pp. 2291-2303. Doi: 10.1002/APP.28312
  17. Trindade, W., Hoareau, W., Megiatto, J. D., Razera, I. A. T., Castellan, A. and Frollin, E., 2005. Thermoset phenolic matrices reinforced with unmodified and surface-grafted furfuryl alcohol sugar cane bagasse and curaua fibers: Properties of fibers and composites, Biomacromolecules, 6(5), pp. 2485-2496. Doi: 10.1021/bm058006+
  18. Cao, Y. and Shibata, S., 2006. Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments, Composites Part A: Applied Science and Manufacturing, 37(3), pp. 423-429. Doi: 10.1016/j.compositesa.2005.05.045
  19. Fujimaki, T., 1998. Processability and properties of aliphatic polyesters, “Bionolle”, synthesized by polycondensation reaction, Polymer Degradation and Stability, 59, pp. 209–214. Doi: 10.1016/S0141-3910(97)00220-6
  20. Muller, R..J., Wit,t U., Rantze, E. and Deckwer W.D., 1998. Architecture of biodegradable copolyesters containing aromatic constituents, Polymer Degradation and Stability, 59, pp. 203–208. Doi: 10.1016/S0141-3910(97)00186-9
  21. Vainionpaa, S., Rokkanen, P. and Torrmala, P., 1989. Surgical applications of biodegradable polymers in human tissues, Progress in Polymer Science, 14, pp. 679–716. Doi: 10.1016/0079-6700(89)90013-0
  22. Wei S., Jian-Xiong, M., Lai, X., Xiao-Song, G. and Xin-Long, M., 2020. Biodegradable materials for bone defect repair, Military Medical Research, 7(54). Doi: 10.1186/s40779-020-00280-6.
  23. Nanda, S., Patra, B.R., Patel, R., Jamie, B. and Ajay, K., 2022. Innovations in applications and prospects of bioplastics and biopolymers: A review, Environmental Chemistry Letters, 20, pp. 379–395. Doi: 10.1007/s10311-021-01334-4
  24. Jonoobi, M., Harun, J., Mathew, A.P. and Oksman, K., 2010. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion, Composites Science and Technology, 70, pp. 1742–1747. Doi: 10.1016/J.COMPSCITECH.2010.07.005
  25. Khedari, J., Suttisonk, B., Pratintong, N. and Hirunlabh J., 2002. New lightweight composite construction materials with low thermal conductivity, Cement and Concrete Composites, 23, pp. 65–70. Doi: 10.1016/S0958-9465(00)00072-X
  26. Asasutjarit, C., Hirunlabh, J., Khedari, J., Charoenvai, S., Zeghmati, S. B. and Shin, C. C., Development of coconut coir-based lightweight cement board, Construction and Building Materials, 21, pp. 277–88. Doi: 10.1016/j.conbuildmat.2005.08.028
  27. de Paiva, F.F.G., de Maria, V.P.K., Torres, G.B., 2019. Sugarcane bagasse fiber as semi-reinforcement filler in natural rubber composite sandals, Journal of Material Cycles and Waste Management, 21, 326–335. Doi: 10.1007/s10163-018-0801-y
  28. Vilay, V., Mariata, M., Taib, R. M. and Todo, M., 2008. Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber–reinforced unsaturated polyester composites, Composites Science and Technology, 68(3), pp. 631-638. Doi: 10.1016/J.COMPSCITECH.2007.10.005
  29. Mandal, A. and Chakrabarty, D., 2011. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization, Carbohydrate Polymers, 86(3), pp. 1291-1299. Doi: 10.1016/J.CARBPOL.2011.06.030
  30. Nadali, E., Karimi, A., Tajvidi, M., Naghdi, R., 2010. Natural Durability of a Bagasse Fiber/ Polypropylene Composite Exposed to Rainbow Fungus (Coriolus versicolor), Journal of Reinforced Plastics and Composites, 29(7), 1028-1037. Doi: 10.1177/0731684409102843Nayak,
  31. Ru, S., Zhao, C., Yang, S. and Liang, D., 2022. Effect of Coir Fiber Surface Treatment on Interfacial Properties of Reinforced Epoxy Resin Composites, Polymers, 14(17), pp. 3488. Doi: 10.3390/polym14173488
  32. Gu, H., 2009. Tensile behaviours of the coir fibre and related composites after NaOH treatment, Materials & Design, 30(9), pp. 3931-3934. Doi: 10.1016/j.matdes.2009.01.035
  33. Opara, H. O., Igwe, I. O. and Ewulonu, C. M., 2016. Mechanical and chemical resistance properties of high-density polyethylene filled with corncob and coconut fibre, International Research Journal of Pure and Applied Chemistry, 11(2), pp. 1-10. Doi: 10.9734/irjpac/2016/22902
  34. Danjaji, I. D., Nawang, R., Ishiaku, U. S., Ismail, H. and Ishak, Z. A. M., 2002. Degradation studies and moisture uptake of sago- starch-filled linear low-density polyethylene composites, Journal of Polymer Testing, 21(1), pp. 75-81. Doi: 10.1016/S0142-9418(01)00051-4
  35. Kim, H. S., Yang, H. S. and Kim, H. J., 2005. Biodegradability and mechanical properties of agro-flour-filled polybutylene succinate biocomposites, Journal of Applied Polymer Science, 97(4), pp. 1513-1521. Doi: 10.1002/app.21905
  36. Phua, Y. J., Lau, N. S., Sudesh, K., Chow, W. S. and Mohd Ishak, Z. A., 2012. Biodegradability studies of poly(butylene succinate)/organo-montmorillonite nanocomposites under controlled compost soil conditions: effects of clay loading and compatibilizer, Polymer Degradation Stability, 97, pp. 1345–1354. Doi: 10.1016/j.polymdegradstab.2012.05.024
  37. Okikiola, G. A., Isiaka, O. O. and Oluyemi, D., 2015. Mechanical and Water Absorption Properties of Alkaline Treated Coconut (cocos nucifera) and Sponge (acanthus montanus) Fibers Reinforced Polypropylene Composites, American Journal of Materials Science and Technology, 4(2), pp. 84-92. Doi: 10.7726/AJMST.2015.1007
  38. James, C. G. and Ronald. A. L. R., 2012. Engineering design with polymers and composites, 2nd edition. CRC Press, Taylor and Francis Group, New York, 8, pp. 161-177. Doi: 10.1201/9781420056372
  39. Troedec, M. L., Sedan D., Peyralaat, C., Bonnet J. P., Smit, A., Guineberliere, R., Gloagen, V. and Krausz, P., 2008. Influence of various chemical treatment on the composition and structure of hemp fibres. Composites Part A: Applied Science and Manufacturing, 39(3), pp. 514-522. Doi: 10.1016/j.compositesa.2007.12.001
  40. Hull, D. and Clyne, J. W., 1996. An introduction to composite materials 2nd edition, Cambridge University Press, pp. 133 – 211. Doi: 10.1017/CBO9781139170130.003
  41. Da, Y., Liu, J., Gao, Z. and Xue, X., 2022. Studying the Influence of Mica Particle Size on the Properties of Epoxy Acrylate/Mica Composite Coatings through Reducing Mica Particle Size by the Ball-Milled Method. Coatings, 12(1), pp.98. Doi: 10.3390/coatings12010098
  42. Tasdemir, M., Kocak, D. Ismail, U., Mohd, Z. A. and Niger, M., 2007. Properties of polypropylene composites produced with silk and cotton fibre waste as reinforcement, International Journal of Polymer Material(s), 12, pp. 1155-1165. Doi: 10.1080/00914030701323752
  43. Feiyu, T., Ling, C. and Xinwu, X., 2021. Dynamical mechanical properties of wood-high density polyethylene composites filled with recycled rubber, Journal of Bioresources and Bioproducts, 6(2), 152-159. Doi: 10.1016/j.jobab.2021.02.007
  44. Ge, M. and Jia, D., 2011. Influence of coupling agent on the properties and structure of poly vinyl chloride/clay nano composite, Journal of Composite Material, 24(6), 23. Doi: 10.1177/0892705710369074
  45. Moghaddam, M.R.A., Razavi, S.M.A. and Jahani, Y., 2018. Effects of Compatibilizer and Thermoplastic Starch (TPS) Concentration on Morphological, Rheological, Tensile, Thermal and Moisture Sorption Properties of Plasticized Polylactic Acid/TPS Blends, Journal of Polymers and the Environment, 26, pp. 3202–3215. Doi: 10.1007/s10924-018-1206-7
  46. Mohanta, N. and Acharya, S., 2016. Fiber surface treatment: Its effect on structural, thermal, and mechanical properties of Luffa cylindrica fiber and its composite, Journal of Composite Materials, 50(22), pp. 3117-3131. Doi: 10.1177/0021998315615654
  47. Oliaei, E., Olsén, P., Lindström, T., and Berglund, L., 2022. Highly reinforced and degradable lignocellulose biocomposites by polymerization of new polyester oligomers, Nature Communications, 13, pp. 5666. Doi: 10.1038/s41467-022-33283-z
  48. Preeti, T., Sachin, A., Orlin, D. V., Lucian L., and Lokendra, P., 2022. A Critical Review of the Performance and Soil Biodegradability Profiles of Biobased Natural and Chemically Synthesized Polymers in Industrial Applications, Environmental Science & Technology, 56 (4), pp. 2071-2095. Doi: 10.1021/acs.est.1c04710
  49. Naba, K. K. and Minna, H., 2023. Integrating biodegradable polyesters in a circular economy, Current Opinion in Green and Sustainable Chemistry, 40, pp. 100751. Doi: 10.1016/j.cogsc.2022.100751
  50. Anibal, B., Yujung, C. and Rafael, A., 2023. Boosting Degradation of Biodegradable Polymers, Macromolecular Rapid Communications, 44(5), pp. 2200769. Doi: 10.1002/marc.202200769