Document Type : Research Note

Authors

1 Department of Physics, Faculty of Natural Sciences, University of Jos, Jos, Plateau State, Nigeria

2 Department of Chemical Pathology, Faculty of Clinical Sciences, College of Health Science, University of Jos, Jos, Plateau State, Nigeria

3 Rheumatology Division, Department of Internal Medicine, Faculty of Clinical Sciences, College of Health Science, University of Jos, Jos, Plateau State, Nigeria

Abstract

Since actual metal emissions can be assessed using Particulate matter (PM) as a proxy, monitoring and controlling metal compounds in biomass emissions is essential for determining their quantities and potential health effects. Using a low volume respirable dust sampler, indoor ambient metal-bearing particles were quantified in-situ and collected from nine (9) randomly selected public kitchens of boarding secondary schools in Jos, Plateau State. Atomic absorption spectrometry (AAS) was used to determine the amounts of specific heavy metals in these collected samples. Additionally, 114 responders' blood samples underwent a biochemical lead assay study. The mean concentrations of the samples taken for Mn, Cd, Cu, Fe, Cr, Zn, Ni, Pb, and Co were 0.097, 0.015, 0.254, 0.314, 1.027, 0.000, 0.076, 0.106, and 0.169 µg/m3, respectively. The results of the blood lead assay analysis showed that 54% of the subjects had B-Pb levels above 80 µg/dL, 33% had B-Pb levels between 40 µg/dL and 80 µg/dL, 8% between 25 µg/dL and 40 µg/dL, 4% between 10 µg/dL and 25 µg/dL, 4% below 10 µg/dL, and 15% below 10 µg/dL. In general, elevated levels of metal-bearing particles in the indoor environment public kitchens expose kitchen staff to several occupational hazards.

Keywords

Main Subjects

  1. Singh, A., and Singh, K.K., 2022. An Overview of the Environmental and Health Consequences of Air Pollution. Iranian Journal of Energy and Environment, 13(3), pp.231–237. Doi: 10.5829/IJEE.2022.13.03.03
  2. Naddafi, K., Hassanvand, M.S., Yunesian, M., Momeniha, F., Nabizadeh, R., Faridi, S., and Gholampour, A., 2012. Health impact assessment of air pollution in megacity of Tehran, Iran. Iranian Journal of Environmental Health Science & Engineering, 9(1), pp.28. Doi: 10.1186/1735-2746-9-28
  3. Baldantoni, D., De Nicola, F., and Alfani, A., 2014. Air biomonitoring of heavy metals and polycyclic aromatic hydrocarbons near a cement plant. Atmospheric Pollution Research, 5(2), pp.262–269. Doi: 10.5094/APR.2014.032
  4. Lucadamo, L., Gallo, L., and Corapi, A., 2019. Power plants: The need for effective bio-monitoring of the contribution of bio(wood) fuelled stations to atmospheric contamination. Atmospheric Pollution Research, 10(6), pp.2040–2052. Doi: 10.1016/j.apr.2019.09.012
  5. Kovacs, H., Szemmelveisz, K., and Palotas, A.B., 2013. Solubility analysis and disposal options of combustion residues from plants grown on contaminated mining area. Environmental Science and Pollution Research, 20(11), pp.7917–7925. Doi: 10.1007/s11356-013-1673-2
  6. Zosima, A.T., Tsakanika, L.-A. V., and Ochsenkühn-Petropoulou, M.T., 2017. Particulate matter emissions, and metals and toxic elements in airborne particulates emitted from biomass combustion: The importance of biomass type and combustion conditions. Journal of Environmental Science and Health, Part A, 52(6), pp.497–506. Doi: 10.1080/10934529.2017.1281685
  7. Kistler, M., Schmidl, C., Padouvas, E., Giebl, H., Lohninger, J., Ellinger, R., Bauer, H., and Puxbaum, H., 2012. Odor, gaseous and PM10 emissions from small scale combustion of wood types indigenous to Central Europe. Atmospheric Environment, 51, pp.86–93. Doi: 10.1016/j.atmosenv.2012.01.044
  8. Banerjee, A.D.., 2003. Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environmental Pollution, 123(1), pp.95–105. Doi: 10.1016/S0269-7491(02)00337-8
  9. Maas, S., Scheifler, R., Benslama, M., Crini, N., Lucot, E., Brahmia, Z., Benyacoub, S., and Giraudoux, P., 2010. Spatial distribution of heavy metal concentrations in urban, suburban and agricultural soils in a Mediterranean city of Algeria. Environmental Pollution, 158(6), pp.2294–2301. Doi: 10.1016/j.envpol.2010.02.001
  10. Wei, B., and Yang, L., 2010. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94(2), pp.99–107. Doi: 10.1016/j.microc.2009.09.014
  11. Kong, S., Lu, B., Bai, Z., Zhao, X., Chen, L., Han, B., Li, Z., Ji, Y., Xu, Y., Liu, Y., and Jiang, H., 2011. Potential threat of heavy metals in re-suspended dusts on building surfaces in oilfield city. Atmospheric Environment, 45(25), pp.4192–4204. Doi: 10.1016/j.atmosenv.2011.05.011
  12. Mirmohammadi, S., 2013. Indoor Air Quality Assessment with Emphasis on Flour Dust: A Cross-Sectional Study of a Random Sample from Iranian Bakeries Workers. Iranian (Iranica) Journal of Energy & Environment, 4(2), pp.150–154. Doi: 10.5829/idosi.ijee.2013.04.02.12
  13. Mirmohammadi, S., Etemadi Nejad, S., Ibrahim, M.H., and Saraji, J.N., 2011. Relationships between indoor air pollution and psychrometric and effective factors in the polyurethane factories with emphasis on Methylene Diphenyl Diisocyanate. Iranian (Iranica) Journal of Energy & Environment, 2(4), pp.366–373. Doi: 10.5829/idosi.ijee.2011.02.04.3039
  14. Lim S.S., Vos T., Flaxman A.D., Danael G.,  2012. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet, 380(9859), pp.2224–2260. Doi: 10.1016/S0140-6736(12)61766-8
  15. Cao, S., Duan, X., Zhao, X., Chen, Y., Wang, B., Sun, C., Zheng, B., and Wei, F., 2016. Health risks of children’s cumulative and aggregative exposure to metals and metalloids in a typical urban environment in China. Chemosphere, 147, pp.404–411. Doi: 10.1016/j.chemosphere.2015.12.134
  16. Chattopadhyay, G., Lin, K.C.-P., and Feitz, A.J., 2003. Household dust metal levels in the Sydney metropolitan area. Environmental Research, 93(3), pp.301–307. Doi: 10.1016/S0013-9351(03)00058-6
  17. Huang, M., Wang, W., Chan, C.Y., Cheung, K.C., Man, Y.B., Wang, X., and Wong, M.H., 2014. Contamination and risk assessment (based on bioaccessibility via ingestion and inhalation) of metal(loid)s in outdoor and indoor particles from urban centers of Guangzhou, China. Science of The Total Environment, 479–480, pp.117–124. Doi: 10.1016/j.scitotenv.2014.01.115
  18. Kang, Y., Wang, H.S., Cheung, K.C., and Wong, M.H., 2011. Polybrominated diphenyl ethers (PBDEs) in indoor dust and human hair. Atmospheric Environment, 45(14), pp.2386–2393. Doi: 10.1016/j.atmosenv.2011.02.019
  19. Kumar, A., and Scott Clark, C., 2009. Lead loadings in household dust in Delhi, India. Indoor Air, 19(5), pp.414–420. Doi: 10.1111/j.1600-0668.2009.00605.x
  20. Kurt-Karakus, P.B., 2012. Determination of heavy metals in indoor dust from Istanbul, Turkey: Estimation of the health risk. Environment International, 50, pp.47–55. Doi: 10.1016/j.envint.2012.09.011
  21. Rasmussen, P.., Subramanian, K.., and Jessiman, B.., 2001. A multi-element profile of house dust in relation to exterior dust and soils in the city of Ottawa, Canada. Science of The Total Environment, 267(1–3), pp.125–140. Doi: 10.1016/S0048-9697(00)00775-0
  22. Rasmussen, P.E., Beauchemin, S., Chénier, M., Levesque, C., MacLean, L.C.W., Marro, L., Jones-Otazo, H., Petrovic, S., McDonald, L.T., and Gardner, H.D., 2011. Canadian House Dust Study: Lead Bioaccessibility and Speciation. Environmental Science & Technology, 45(11), pp.4959–4965. Doi: 10.1021/es104056m
  23. Wang, W., Huang, M., Kang, Y., Wang, H., Leung, A.O.W., Cheung, K.C., and Wong, M.H., 2011. Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: Status, sources and human health risk assessment. Science of The Total Environment, 409(21), pp.4519–4527. Doi: 10.1016/j.scitotenv.2011.07.030
  24. Yoshinaga, J., Yamasaki, K., Yonemura, A., Ishibashi, Y., Kaido, T., Mizuno, K., Takagi, M., and Tanaka, A., 2014. Lead and other elements in house dust of Japanese residences – Source of lead and health risks due to metal exposure. Environmental Pollution, 189, pp.223–228. Doi: 10.1016/j.envpol.2014.03.003
  25. Chen, H., Lu, X., and Li, L.Y., 2014. Spatial distribution and risk assessment of metals in dust based on samples from nursery and primary schools of Xi’an, China. Atmospheric Environment, 88, pp.172–182. Doi: 10.1016/j.atmosenv.2014.01.054
  26. Lu, X., Zhang, X., Li, L.Y., and Chen, H., 2014. Assessment of metals pollution and health risk in dust from nursery schools in Xi’an, China. Environmental Research, 128, pp.27–34. Doi: 10.1016/j.envres.2013.11.007
  27. Lin, Y., Fang, F., Wang, F., and Xu, M., 2015. Pollution distribution and health risk assessment of heavy metals in indoor dust in Anhui rural, China. Environmental Monitoring and Assessment, 187(9), pp.565. Doi: 10.1007/s10661-015-4763-4
  28. Yang, Y., Liu, L., Xiong, Y., Zhang, G., Wen, H., Lei, J., Guo, L., and Lyu, Y., 2016. A comparative study on physicochemical characteristics of household dust from a metropolitan city and a remote village in China. Atmospheric Pollution Research, 7(6), pp.1090–1100. Doi: 10.1016/j.apr.2016.06.009
  29. Snyder, D.C., Schauer, J.J., Gross, D.S., and Turner, J.R., 2009. Estimating the contribution of point sources to atmospheric metals using single-particle mass spectrometry. Atmospheric Environment, 43(26), pp.4033–4042. Doi: 10.1016/j.atmosenv.2009.05.011
  30. Aderhold, D., Williams, C.J., and Edyvean, R.G.J., 1996. The removal of heavy-metal ions by seaweeds and their derivatives. Bioresource Technology, 58(1), pp.1–6. Doi: 10.1016/S0960-8524(96)00072-7
  31. Blanco, A., Sanz, B., Llama, M.J., and Serra, J.L., 1999. Biosorption of heavy metals to immobilised Phormidium laminosum biomass. Journal of Biotechnology, 69(2–3), pp.227–240. Doi: 10.1016/S0168-1656(99)00046-2
  32. Lee, H.S., and Suh, J.H., 2000. Continuous biosorption of heavy metal ions by Ca-loadedlaminaria japonica in fixed bed column. Korean Journal of Chemical Engineering, 17(4), pp.477–479. Doi: 10.1007/BF02706864
  33. Vieira, C., Morais, S., Ramos, S., Delerue-Matos, C., and Oliveira, M.B.P.P., 2011. Mercury, cadmium, lead and arsenic levels in three pelagic fish species from the Atlantic Ocean: Intra- and inter-specific variability and human health risks for consumption. Food and Chemical Toxicology, 49(4), pp.923–932. Doi: 10.1016/j.fct.2010.12.016
  34. Castro-González, M.I., and Méndez-Armenta, M., 2008. Heavy metals: Implications associated to fish consumption. Environmental Toxicology and Pharmacology, 26(3), pp.263–271. Doi: 10.1016/j.etap.2008.06.001
  35. Jomova, K., and Valko, M., 2011. Advances in metal-induced oxidative stress and human disease. Toxicology, 283(2–3), pp.65–87. Doi: 10.1016/j.tox.2011.03.001
  36. Pant, P.P., and Tripathi, A.K., 2014. Impact Of Heavy Metals On Morphological And Biochemical Parameters Of Shorea Robusta Plant. Ekologia, 33(2), pp.116–126. Doi: 10.2478/eko-2014-0012
  37. Guo, F., Zhong, Z., Xue, H., and Zhong, D., 2018. Migration and Distribution of Heavy Metals During Co-combustion of Sedum plumbizincicola and Coal. Waste and Biomass Valorization, 9(11), pp.2203–2210. Doi: 10.1007/s12649-017-9955-4
  38. Jangirh, R., Ahlawat, S., Arya, R., Mondal, A., Yadav, L., Kotnala, G., Yadav, P., Choudhary, N., Rani, M., Banoo, R., Rai, A., Saharan, U.S., Rastogi, N., Patel, A., Shivani, Gadi, R., Saxena, P., Vijayan, N., Sharma, C., Sharma, S.K., and Mandal, T.K., 2022. Gridded distribution of total suspended particulate matter (TSP) and their chemical characterization over Delhi during winter. Environmental Science and Pollution Research, 29(12), pp.17892–17918. Doi: 10.1007/s11356-021-16572-w
  39. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., and Beeregowda, K.N., 2014. Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), pp.60–72. Doi: 10.2478/intox-2014-0009
  40. Anjorin, O.F., Imoh, L.C., and Uhunmwangho, C., 2022. Evaluation of Air Quality Indices of Selected Public Kitchens and Possible Health Consequences. Iranian Journal of Energy and Environment, 13(4), pp.408–416. Doi: 10.5829/IJEE.2022.13.04.10
  41. Abdulla, M., 2020. Essential and Toxic Trace Elements and Vitamins in Human Health. Elsevier Amsterdam, Netherlands.
  42. Zhang, H., Hu, D., Chen, J., Ye, X., Wang, S.X., Hao, J.M., Wang, L., Zhang, R., and An, Z., 2011. Particle Size Distribution and Polycyclic Aromatic Hydrocarbons Emissions from Agricultural Crop Residue Burning. Environmental Science & Technology, 45(13), pp.5477–5482. Doi: 10.1021/es1037904
  43. Oladoye, P.O., Olowe, O.M., and Asemoloye, M.D., 2022. Phytoremediation technology and food security impacts of heavy metal contaminated soils: A review of literature. Chemosphere, 288, pp.132555. Doi: 10.1016/j.chemosphere.2021.132555
  44. Liu, Y., Ye, X., Zhou, B., Tian, Z., Liu, C., and Li, K., 2023. Potentially toxic elements in smoke particles and residual ashes by biomass combustion from Huangshi National Mine Park, China. Environmental Geochemistry and Health, 45(3), pp.629–645. Doi: 10.1007/s10653-022-01232-w
  45. Yaparla, D., Nagendra, S.M.S., and Gummadi, S.N., 2019. Characterization and health risk assessment of indoor dust in biomass and LPG-based households of rural Telangana, India. Journal of the Air & Waste Management Association, 69(12), pp.1438–1451. Doi: 10.1080/10962247.2019.1668874
  46. Nicolas, B., and Descotes, J., 1996. Metals. In: Human Toxicology. Elsevier, pp 515–540.