Steam Reforming of Methanol and Reactor Optimization for Additional Hydrogen Production: Process Simulation

Document Type : Original Article


1 Department of Chemistry, University of Tehran, Tehran, Iran

2 Northern Research Center for Science & Technology, Malek Ashtar University of Technology, Tehran, Iran


Considering the escalating significance of hydrogen production as a high-energy-density fuel, coupled with the challenges associated with its transportation and storage, the necessity to generate hydrogen at the point of consumption has become more pronounced than ever before. Thus, this research endeavors to comprehensively investigate various hydrogen production processes and elucidate the merits and drawbacks of each technique. Additionally, the catalysts employed in these processes were examined, ultimately leading to the selection of methanol steam reforming using a Cu/ZnO/Al2O3 catalyst within a fixed bed reactor for hydrogen production. Subsequently, the process underwent initial simulation utilizing Aspen Plus software, enabling a close-to-reality assessment of the simulation's challenges. Following the validation of the simulation results, a comparative analysis was conducted between a reactor operating at a specified temperature (T=220℃) and a co-current reactor. Each reactor possessed distinct advantages and disadvantages. Through this comparison, it was observed that, in order to achieve the same conversion, the length of the co-current reactor could be reduced by 5.7 cm compared to the specified temperature reactor. Consequently, the construction cost was reduced; however, this modification resulted in an increased production of carbon monoxide, necessitating further investigation.


Main Subjects

  1. Nikolaidis, P. and A. Poullikkas, 2017. A comparative overview of hydrogen production processes, Renewable and Sustainable Energy Reviews, 67, pp. 597-611. Doi: 10.1016/j.rser.2016.09.044
  2. Dawood, F., M. Anda, and G. Shafiullah, 2020. Hydrogen production for energy: An overview, International Journal of Hydrogen Energy, 45(7), pp. 3847-3869. Doi: 10.1016/j.ijhydene.2019.12.059
  3. Liu, K., C. Song, and V. Subramani, 2010. Hydrogen and syngas production and purification technologies, John Wiley & Sons.
  4. Voldsund, M., K. Jordal, and R. Anantharaman, 2016. Hydrogen production with CO2 capture, International Journal of Hydrogen Energy, 41(9), pp. 4969-4992. Doi: 10.1016/j.ijhydene.2016.01.009
  5. Kaiwen, L., Y. Bin, and Z. Tao, 2018. Economic analysis of hydrogen production from steam reforming process: A literature review, Energy Sources, Part B: Economics, Planning, and Policy, 13(2), pp. 109-115. Doi: 10.1080/15567249.2017.1387619
  6. Noh, Y.S., K.-Y. Lee, and D.J. Moon, 2019. Hydrogen production by steam reforming of methane over nickel based structured catalysts supported on calcium aluminate modified SiC, International Journal of Hydrogen Energy, 44(38), pp. 21010-21019. Doi: 10.1016/j.ijhydene.2019.04.287
  7. Xing, S., Zhao, C., Ban, S., Su, H., Chen, M., and Wang, H., 2021. A hybrid fuel cell system integrated with methanol steam reformer and methanation reactor, International Journal of Hydrogen Energy, 46(2), pp. 2565-2576. Doi: 10.1016/j.ijhydene.2020.10.107
  8. Han, J., I.-s. Kim, and K.-S. Choi, 2000. Purifier-integrated methanol reformer for fuel cell vehicles, Journal of Power Sources, 86(1-2), pp. 223-227. Doi: 10.1016/S0378-7753(99)00419-X
  9. Yao, C.-Z., Wang, L. C., Liu, Y. M., Wu, G. S., Cao, Y., Dai, W. L., He, H.Y. and Fan, K. N, 2006. Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts, Applied Catalysis A: General, 297(2), pp. 151-158. Doi: 10.1016/j.apcata.2005.09.002
  10. Kundu, A., Y.G. Shul, and D.H. Kim, 2007. Chapter Seven -Methanol reforming processes, Advances in Fuel Cells. pp. 419-472. Doi: 10.1016/S1752-301X(07)80012-3
  11. LeValley, T.L., A.R. Richard, and M. Fan, 2014. The progress in water gas shift and steam reforming hydrogen production technologies–A review, International Journal of Hydrogen Energy, 39(30), pp. 16983-17000. Doi: 10.1016/j.ijhydene.2014.08.041
  12. Mariño, F., C. Descorme, and D. Duprez, 2004. Noble metal catalysts for the preferential oxidation of carbon monoxide in the presence of hydrogen (PROX), Applied Catalysis B: Environmental, 54(1), pp. 59-66. Doi: 10.1016/j.apcatb.2004.06.008
  13. Ouzounidou, M., Ipsakis, D., Voutetakis, S., Papadopoulou, S., and Seferlis, P., 2009. A combined methanol autothermal steam reforming and PEM fuel cell pilot plant unit: Experimental and simulation studies, Energy, 34(10), pp. 1733-1743. Doi: 10.1016/
  14. Katiyar, N., S. Kumar, and S. Kumar, 2013. Polymer electrolyte membrane fuel cell grade hydrogen production by methanol steam reforming: a comparative multiple reactor modeling study, Journal of Power Sources, 243, pp. 381-391. Doi: 10.1016/j.jpowsour.2013.06.046
  15. Laguna, O., Domínguez, M.I., Oraá, S., Navajas, A., Arzamendi, G., Gandía, L.M., Centeno, M.A., Montes, M. and Odriozola, J.A., 2013. Influence of the O2/CO ratio and the presence of H2O and CO2 in the feed-stream during the preferential oxidation of CO (PROX) over a CuOx/CeO2-coated microchannel reactor, Catalysis Today, 203, pp. 182-187. Doi: 10.1016/j.cattod.2012.04.021
  16. Mishra, A. and R. Prasad, 2011. A review on preferential oxidation of carbon monoxide in hydrogen rich gases, Bulletin of Chemical Reaction Engineering & Catalysis, 6(1), pp. 1-14. Doi: 10.9767/bcrec.
  17. Choi, Y. and H.G. Stenger, 2004. Kinetics, simulation and insights for CO selective oxidation in fuel cell applications, Journal of Power Sources, 129(2), pp. 246-254. Doi: 10.1016/j.jpowsour.2003.11.038
  18. Sazali, N., M.A. Mohamed, and W.N.W. Salleh, 2020. Membranes for hydrogen separation: A significant review, The International Journal of Advanced Manufacturing Technology, 107(3), pp. 1859-1881. Doi: 10.1007/s00170-020-05141-z
  19. Xiao, J., Peng, Y., Bénard, P., and Chahine, R., 2016. Thermal effects on breakthrough curves of pressure swing adsorption for hydrogen purification, International Journal of Hydrogen Energy, 41(19), pp. 8236-8245. Doi:10.1016/j.ijhydene.2015.11.126
  20. Huang, Q. and M. Eić, 2010. CHAPTER 12 - Simulation of Hydrogen Purification by Pressure-Swing Adsorption for Application in Fuel Cells, Environanotechnology, pp. 221-244. Doi: 10.1016/B978-0-08-054820-3.00012-5
  21. Ribeiro, A.M., Grande, C. A., Lopes, F. V., Loureiro, J. M., and Rodrigues, A. E, 2008. A parametric study of layered bed PSA for hydrogen purification, Chemical Engineering Science, 63(21), pp. 5258-5273. Doi: 10.1016/j.ces.2008.07.017
  22. Zhuang, X.,  Xu, X., Li, L. and Deng, D., Numerical investigation of a multichannel reactor for syngas production by methanol steam reforming at various operating conditions, International Journal of Hydrogen Energy, 45(29), pp. 14790-14805. Doi: 10.1016/j.ijhydene.2020.03.207
  23. Chougule, A. and R.R. Sonde, 2019. Modelling and experimental investigation of compact packed bed design of methanol steam reformer, International Journal of Hydrogen Energy, 44(57), pp. 29937-29945. Doi: 10.1016/j.ijhydene.2019.09.166
  24. Zhu, J., Araya, S. S., Cui, X., Sahlin, S. L., and Kær, S. K., 2020. Modeling and design of a multi-tubular packed-bed reactor for methanol steam reforming over a Cu/ZnO/Al2O3 catalyst, Energies, 13(3), pp. 610. Doi: 10.3390/en13030610
  25. Liu, K., A. Wang, and T. Zhang, 2012. Recent advances in preferential oxidation of CO reaction over platinum group metal catalysts, ACS Catalysis, 2(6), pp. 1165-1178. Doi: 10.1021/cs200418w
  26. Sharifi Pajaie; M. Taghizadeh; A. Eliassi, 2012. Hydrogen Production from Methanol Steam Reforming over Cu/ZnO/Al2O3/CeO2/ZrO2 Nanocatalyst in an Adiabatic Fixed-Bed Reactor, Iranica Journal of Energy and Environment, 3(4), pp. 307-313. Doi: 10.5829/idosi.ijee.2012.03.04.03
  27. Lopes, F.V., C.A. Grande, and A.E. Rodrigues, 2011. Activated carbon for hydrogen purification by pressure swing adsorption: Multicomponent breakthrough curves and PSA performance, Chemical Engineering Science, 66(3), pp. 303-317. Doi: 10.1016/j.ces.2010.10.034
  28. Keller, T. and G. Shahani, 2016. PSA technology: Beyond hydrogen purification, Chemical Engineering, 123(1), pp. 50. Doi: 10.11113/jest.v3n2.52
  29. Lin, Y.-M. and M.-H. Rei, 2001. Study on the hydrogen production from methanol steam reforming in supported palladium membrane reactor, Catalysis Today, 67(1-3), pp. 77-84. Doi: 10.1016/S0920-5861(01)00267-X
  30. Mattos, L.V., Jacobs, G., Davis, B. H., and Noronha, F. B., 2012. Production of hydrogen from ethanol: review of reaction mechanism and catalyst deactivation, Chemical reviews, 112(7), pp. 4094-4123. Doi: 10.1021/cr2000114
  31. Iwasa, N., Nomura, W., Mayanagi, T., Fujita, S. I., Arai, M., and Takezawa, N.  2004. Hydrogen production by steam reforming of methanol, Journal of Chemical Engineering of Japan, 37(2), pp. 286-293. Doi: 10.1252/jcej.37.286