Document Type : ACEC-2023


Sea-Based Energy Research Group, Faculty of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran


Due to the necessity of utilizing renewable energies, the Archimedes screw turbine can be used as a power generation converter for the use of hydropower energy from river flows. A laboratory-scale model of this turbine with a scale of 1:6 has been designed and constructed. In the experimental tests, the performance characteristics of the turbine were investigated based on variations in the flow rate and electrical resistance. The optimal flow rate for the turbine was determined with the aim of achieving maximum efficiency. The performance characteistics of the turbine at this flow rate were evaluated using empirical equations derived from the experimental tests for various parameters. These equations indicated higher values for these parameters at this flow rate. Furthermore, for the scaling of the Archimedes screw turbine, dimensionless numbers such as Froude number and flow rates ratio were introduced. The experimental results were extrapolated to the prototype scale at the optimal flow rate of 2.6 (lit/s), where the maximum turbine efficiency occurs. The results showed that the use of Froude scaling led to approximately 25% higher values for the performance characteristics of the turbine compared to scaling based on flow rates ratio.


Main Subjects

  1. Esmaeili Shayan, M., Hayati, M. R., Najafi, G. and Esmaeili Shayan, S., 2022. The Strategy of Energy Democracy and Sustainable Development: Policymakers and Instruments, Iranica Journal of Energy & Environment, 13(2), pp. 185-201. Doi:10.5829/ijee.2022.13.02.10
  2. Shayan, M. E., Najafi, G., Ghobadian, B., Gorjian, S., Mamat, R. and Ghazali, M. F., 2022. Multi-microgrid optimization and energy management under boost voltage converter with Markov prediction chain and dynamic decision algorithm, Renewable Energy, 201, pp. 179-189. Doi: 10.1016/j.renene.2022.11.006
  3. Hayati, M. R., Ranjbar, S., Abdar, M. R., Molaei Nasab, M., Homayounmajd, S. and Esmaeili Shayan, M., 2023. A Comparative Analysis of Solar Energy Strategies in Middle East with Rich Fossil Resources, Iranica Journal of Energy & Environment, 14(3), pp. 271-288. Doi:10.5829/ijee.2023.14.03.09
  4. Esmaeili Shayan, M. and Hojati, J., 2021. Floating Solar Power Plants: A Way to Improve Environmental and Operational Flexibility, Iranica Journal of Energy & Environment, 12(4), pp. 337-348. Doi:10.5829/ijee.2021.12.04.07
  5. Dincer, I., 2000. Renewable energy and sustainable development: a crucial review, Renewable and sustainable energy reviews, 4(2), pp. 157-175. Doi: 10.1016/S1364-0321(99)00011-8
  6. Zhang, Y., Ma, H. and Zhao, S., 2021. Assessment of hydropower sustainability: Review and modeling, Journal of Cleaner Production, 321, pp. 128898. Doi: 10.1016/j.jclepro.2021.128898
  7. Okot, D. K., 2013. Review of small hydropower technology, Renewable and Sustainable Energy Reviews, 26, pp. 515-520. Doi: 10.1016/j.rser.2013.05.006
  8. Nuernbergk, D. M., 2017. Archimedes screw in the twenty-first century, Archimedes in the 21st Century: Springer, pp. 113-124. Doi: 10.1007/978-3-319-58059-3_6
  9. Gogoi, P., Handique, M., Purkayastha, S. and Newar, K., 2018. Potential of archimedes screw turbine in rural india electrification: a review, ADBU Journal of Electrical and Electronics Engineering (AJEEE), 2(1), pp. 30-35. Available at:
  10. Waters, S. and Aggidis, G. A., 2015. Over 2000 years in review: Revival of the Archimedes Screw from Pump to Turbine, Renewable and Sustainable Energy Reviews, 51, pp. 497-505. Doi: 10.1016/j.rser.2015.06.028
  11. Rorres, C., 2000. The turn of the screw: Optimal design of an Archimedes screw, Journal of hydraulic engineering, 126(1), pp. 72-80. Doi: 10.1061/(ASCE)0733-9429(2000)126:1(72)
  12. Nuernbergk, D. M. and Rorres, C., 2013. Analytical model for water inflow of an Archimedes screw used in hydropower generation, Journal of Hydraulic Engineering, 139(2), pp. 213-220. Doi: 10.1061/(ASCE)HY.1943-7900.0000661
  13. Charisiadis, C., 2015. An Introductory Presentation to the “Archimedean Screw” as a Low Head Hydropower Generator, Leibniz Univerity Hannover: Hannover, Germany. Available at:
  14. Lee, K. T., Kim, E.-S., Chu, W.-S. and Ahn, S.-H., 2015. Design and 3D printing of controllable-pitch archimedean screw for pico-hydropower generation, Journal of Mechanical Science and Technology, 29, pp. 4851-4857. Doi: 10.1007/s12206-015-1032-y
  15. Kozyn, A. and Lubitz, W. D., 2017. A power loss model for Archimedes screw generators, Renewable Energy, 108, pp. 260-273. Doi: 10.1016/j.renene.2017.02.062
  16. Dellinger, G., Garambois, P.-A., Dellinger, N., Dufresne, M., Terfous, A., Vazquez, J. and Ghenaim, A., 2018. Computational fluid dynamics modeling for the design of Archimedes Screw Generator, Renewable Energy, 118, pp. 847-857. Doi: 10.1016/j.renene.2017.10.093
  17. Maulana, M. I., Syuhada, A. and Kurniawan, R., 2019. Experimental Study on the Effect of Flow rate on the Performance of Two-Blade Archimedes Screw Turbine, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 61(1), pp. 10-19. Available at:
  18. Bustomi, M. A., Indarto, B. and Putra, A. M. K., 2021. Characteristics Analysis of the Archimedes Screw Turbine Micro-hydro Power Plant with Variation of Turbine Elevation Angle, JFA (Jurnal Fisika dan Aplikasinya), 17(2), pp. 56-61. Doi: 10.12962/j24604682.v17i2.8983
  19. Lee, M. D. and San Lee, P., 2021. Modelling the energy extraction from low-velocity stream water by small scale Archimedes screw turbine, Journal of King Saud University-Engineering Sciences. Doi: 10.1016/j.jksues.2021.04.006
  20. Sari, D. P., Saputra, M. A., Syofii, I. and Adanta, D., 2021. A Study of The Developing Archimedes Screw as A Turbine, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 87(1), pp. 151-160. Doi: 10.37934/arfmts.87.1.151160
  21. Thakur, N. K., Thakur, R., Kashyap, K. and Goel, B., 2022. Efficiency enhancement in Archimedes screw turbine by varying different input parameters–An experimental study, Materials Today: Proceedings, 52, pp. 1161-1167. Doi: 10.1016/j.matpr.2021.11.020
  22. Darmono, B. and Pranoto, H., 2022. Archimedes Screw Turbines (ASTs) Performance Analysis using CFD Software Based on Variation of Blades Distance and Thread Number on The Pico Hydro Powerplant, International Journal of Advanced Technology in Mechanical, Mechatronics and Materials, 3(1), pp. 18-25. Doi: 10.37869/ijatec.v3i1.53.
  23. Ortiz Osornio, L. J., 2022. Implementation and Usage of Low-cost Turbines for Power Generation in Water Networks. Available at:
  24. Zamani, M., Shafaghat, R. and Kharkeshi, B. A., 2023. Experimental Investigation on the Effect of Flow Rate and Load on the Hydrodynamic Behavior and Performance of an Archimedes Screw Turbine, International Journal of Engineering, 36(4), pp. 733-745. Doi: 10.5829/ije.2023.36.04a.12
  25. Zamani, M., Shafaghat, R. and Alizadeh Kharkeshi, B., 2023. Numerical Study of the Hydrodynamic Behavior of an Archimedes Screw Turbine by Experimental Data in order to Optimize Turbine Performance: The Genetic Algorithm, Journal of Applied and Computational Mechanics. 9(4), pp. 1060-1075. Doi: 10.22055/JACM.2023.43137.4031
  26. Kusumanto, R. and Nugraha, M. N., 2023. Archimedes Screw Turbine Application on Portable Mini Hydropower Plant, Jurnal Polimesin, 21(1), pp. 88-92. Doi: 10.30811/jpl.v21i1
  27. Davirov, A., Kodirov, D., Tukhtaeva, R., Ibragimov, I. and Urokova, N., 2023. Development and testing of a laboratory model of a two-turbine small hydroelectric power plant, IOP Conference Series: Earth and Environmental Science: IOP Publishing, pp. 012018, Doi: 10.1088/1755-1315/1142/1/012018
  28. Indarto, B., Yusuf, B. and Bustomi, M., 2023.Characteristics of Archimedes screw turbine microhydro power plant in various gearboxes, AIP Conference Proceedings: AIP Publishing, 2604(1). Doi: 10.1063/5.0115785
  29. Mousavi, M. H., CheshmehBeigi, H. M. and Ahmadi, M., 2023. A DDSRF-based VSG control scheme in islanded microgrid under unbalanced load conditions, Electrical Engineering, pp. 1-17. Doi: 10.1007/s00202-023-01941-0
  30. Songin, K., 2017. Experimental analysis of Archimedes screw turbines. University of Guelph. Available at:
  31. Stergiopoulou, A. and Stergiopoulos, V., 2021. CFD Simulations of Tubular Archimedean Screw Turbines Harnessing the Small Hydropotential of Greek Watercourses, International Journal of Energy and Environment, 12(1), pp. 19-30. Available at:
  32. Kharkeshi, B. A., Shafaghat, R., Jahanian, O., Alamian, R. and Rezanejad, K., 2022. Experimental study of an oscillating water column converter to optimize nonlinear PTO using genetic algorithm, Energy, 260, pp. 124925. Doi: 10.1016/
  33. Alizadeh Kharkeshi, B., Shafaghat, R., Jahanian, O. and Alamian, R., 2021. Experimental evaluation of the effect of dimensionless hydrodynamic coefficients on the performance of a multi-chamber oscillating water column converter in laboratory scale, Modares Mechanical Engineering, 21(12), pp. 823-834. Doi: 20.1001.1.10275940.1400.
  34. White, F. M., 1979. Fluid mechanics. Tata McGraw-Hill Education. ISSN: 0070648484. Available at:
  35. Shafaghat, R., Fallahi, M., Alizadeh Kharkeshi, B. and Yousefifard, M., 2022. Experimental Evaluation of the Effect of Incident Wave Frequency on the Performance of a Dual-chamber Oscillating Water Columns Considering Resonance Phenomenon Occurrence, Iranian (Iranica) Journal of Energy & Environment, 13(2), pp. 98-110. Doi: 10.5829/ijee.2022.13.02.01