Document Type : Original Article

Authors

1 Department of Mechanical Engineering, Arak University of Technology, Arak, Iran

2 Department of Mechanical Engineering, University of Tehran, Tehran, Iran

Abstract

Noise pollution is one of the biggest problems of wind turbines, especially when these turbines are located near residential areas. In this article, the effect of blade thickness is numerically investigated on the noise pollution of an H-type Darrieus wind turbine. The flow is first simulated using the unsteady Reynolds averaged Navier-Stokes equations and the SST-kω model at the tip speed ratio of 2.64. Then, the noise is calculated using Ffowcs Williams-Hawkings equations. Blade thickness is changed using NACA airfoils from NACA 0008 up to NACA 0024. It is concluded that noise calculation at only one point, known as a routine method in noise investigation of wind turbines, is insufficient to investigate the noise of this turbine. Here, maximum noise in directivity is defined as the criterion of noise pollution. The results show that changing the blade profile of the benchmark turbine from NACA 0021 to NACA 0015 increases the power coefficient from 0.318 to 0.371 and reduces the maximum noise from 95.67 dB (76.35 dB) to 90.19 dB (71.01 dB) at R = 2 m (8m). For NACA 0018, the power coefficient is 0.353, and the maximum noise is 89.78 dB (70.47 dB) at R = 2 m (8m). Overall, the highest output power is for NACA 0015, and the lowest noise pollution is for NACA 0018.

Keywords

Main Subjects

  1. IRENA, Renewable Capacity Statistics 2021. 2021: International Renewable Energy Agency (IRENA).
  2. Li, S., Q. Chen, Y. Li, S. Pröbsting, C. Yang, X. Zheng, Y. Yang, W. Zhu, W. Shen and F. Wu, 2022. Experimental Investigation on Noise Characteristics of Small Scale Vertical Axis Wind Turbines in Urban Environments. Renewable Energy, 200970-982. Doi:10.1016/j.renene.2022.09.099
  3. Jeffery, R.D., C. Krogh and B. Horner, 2013. Adverse Health Effects of Industrial Wind Turbines. Canadian Family Physician, 59(5): 473-475.
  4. Knopper, L.D., C.A. Ollson, L.C. McCallum, M.L. Whitfield Aslund, R.G. Berger, K. Souweine and M. McDaniel, 2014. Wind Turbines and Human Health. Frontiers in Public Health, 263.
  5. Freiberg, A., C. Schefter, M. Girbig, V.C. Murta and A. Seidler, 2019. Health Effects of Wind Turbines on Humans in Residential Settings: Results of a Scoping Review. Environmental Research, 169446-463. Doi:10.1016/j.envres.2018.11.032.
  6. Nissenbaum, M.A., J.J. Aramini and C.D. Hanning, 2012. Effects of Industrial Wind Turbine Noise on Sleep and Health. Noise and Health, 14(60): 237. Doi:10.4103/1463-1741.102961
  7. Shepherd, D. and R. Billington, 2011. Mitigating the Acoustic Impacts of Modern Technologies: Acoustic, Health, and Psychosocial Factors Informing Wind Farm Placement. Bulletin of Science, Technology & Society, 31(5): 389-398. Doi:10.1177/0270467611417841
  8. Smith, A., 1991. A Review of the Non-Auditory Effects of Noise on Health. Work & Stress, 5(1): 49-62. Doi:10.1080/02678379108257002
  9. Möllerström, E., S. Larsson, F. Ottermo, J. Hylander and L. Bååth, Noise Propagation from a Vertical Axis Wind Turbine, in inter. noise 2014, 43rd International Congress on Noise Control Engineering, Melbourne, Australia, November 16-19, 2014. 2014, Australian Acoustical Society.
  10. Taylor, J., C. Eastwick, C. Lawrence and R. Wilson, 2013. Noise Levels and Noise Perception from Small and Micro Wind Turbines. Renewable Energy, 55120-127. Doi:10.1016/j.renene.2012.11.031.
  11. Waye, K.P. and E. Öhrström, 2002. Psycho-Acoustic Characters of Relevance for Annoyance of Wind Turbine Noise. Journal of Sound and Vibration, 250(1): 65-73. Doi:10.1006/jsvi.2001.3905
  12. Tsai, D.-Y., H.-Y. Hsu, G.-E. Chen and C.-C. Ting, 2018. Developing the Full-Field Wind Generator Integrated with the Vertical Twin Rotors. International Journal of Electrical Power & Energy Systems, 103395-403. Doi:10.1016/j.ijepes.2018.06.003.
  13. Hashem, I. and M. Mohamed, 2018. Aerodynamic Performance Enhancements of H-Rotor Darrieus Wind Turbine. Energy, 142531-545. Doi:10.1016/j.energy.2017.10.036
  14. Parakkal, J.U., K. El Kadi, A. El-Sinawi, S. Elagroudy and I. Janajreh, 2019. Numerical Analysis of Vawt Wind Turbines: Joukowski Vs Classical Naca Rotor’s Blades. Energy Procedia, 1581194-1201. Doi:10.1016/j.egypro.2019.01.306
  15. Huang, H., J. Li and G. Li, 2023. Improving the Self-Starting and Operating Characteristics of Vertical Axis Wind Turbine by Changing Center Distance in Part of Blades. Journal of Building Engineering, 68105974. Doi:10.1016/j.jobe.2023.105974
  16. Nemati, A., 2020. Three-Dimensional Numerical Study of the Performance of a Small Combined Savonius-Darrieus Vertical Wind Turbine. Iranica Journal of Energy & Environment, 11(2): 163-169. Doi:10.5829/ijee.2020.11.02.11
  17. Abid, M., K. S Karimov, H. A Wajid, F. Farooq, H. Ahmed and O. H Khan, 2015. Design, Development and Testing of a Combined Savonius and Darrieus Vertical Axis Wind Turbine. Iranica Journal of Energy & Environment, 6(1): 1-4. Doi:10.5829/idosi.ijee.2015.06.01.02
  18. Singh, M., A. Biswas and R. Misra, 2015. Investigation of Self-Starting and High Rotor Solidity on the Performance of a Three S1210 Blade H-Type Darrieus Rotor. Renewable Energy, 76381-387. Doi:10.1016/j.renene.2014.11.027
  19. Celik, Y., L. Ma, D. Ingham and M. Pourkashanian, 2020. Aerodynamic Investigation of the Start-up Process of H-Type Vertical Axis Wind Turbines Using Cfd. Journal of Wind Engineering and Industrial Aerodynamics, 204104252. Doi:10.1016/j.jweia.2020.104252
  20. Tong, G., Y. Li, K. Tagawa and F. Feng, 2023. Effects of Blade Airfoil Chord Length and Rotor Diameter on Aerodynamic Performance of Straight-Bladed Vertical Axis Wind Turbines by Numerical Simulation. Energy, 265126325. Doi:10.1016/j.energy.2022.126325
  21. Maalouly, M., M. Souaiby, A. ElCheikh, J. Issa and M. Elkhoury, 2022. Transient Analysis of H-Type Vertical Axis Wind Turbines Using Cfd. Energy Reports, 84570-4588. Doi:10.1016/j.egyr.2022.03.136
  22. Mohamed, M., 2014. Aero-Acoustics Noise Evaluation of H-Rotor Darrieus Wind Turbines. Energy, 65596-604. Doi:10.1016/j.energy.2013.11.031
  23. Ghorbaniasl, G. and C. Lacor, 2012. A Moving Medium Formulation for Prediction of Propeller Noise at Incidence. Journal of Sound and Vibration, 331(1): 117-137. Doi:10.1016/j.jsv.2011.08.018
  24. Ghasemian, M. and A. Nejat, 2015. Aero-Acoustics Prediction of a Vertical Axis Wind Turbine Using Large Eddy Simulation and Acoustic Analogy. Energy, 88711-717. Doi:10.1016/j.jsv.2011.08.018
  25. Su, J., H. Lei, D. Zhou, Z. Han, Y. Bao, H. Zhu and L. Zhou, 2019. Aerodynamic Noise Assessment for a Vertical Axis Wind Turbine Using Improved Delayed Detached Eddy Simulation. Renewable Energy, 141559-569. Doi:10.1016/j.renene.2019.04.038
  26. Karimian, S. and S. Rasekh, 2021. Power and Noise Performance Assessment of a Variable Pitch Vertical Axis Darrieus Type Wind Turbine. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(9): 437. Doi:10.1007/s40430-021-03103-4
  27. Mohamed, M., A. Dessoky and F. Alqurashi, 2019. Blade Shape Effect on the Behavior of the H-Rotor Darrieus Wind Turbine: Performance Investigation and Force Analysis. Energy, 1791217-1234. Doi:10.1016/j.energy.2019.05.069
  28. Menter, F.R., 2009. Review of the Shear-Stress Transport Turbulence Model Experience from an Industrial Perspective. International Journal of Computational Fluid Dynamics, 23(4): 305-316. Doi:10.1080/10618560902773387
  29. Mohamed, M., G. Janiga, E. Pap and D. Thévenin, 2011. Optimal Blade Shape of a Modified Savonius Turbine Using an Obstacle Shielding the Returning Blade. Energy Conversion and Management, 52(1): 236-242. Doi:10.1016/j.enconman.2010.06.070
  30. Castelli, M.R., A. Englaro and E. Benini, 2011. The Darrieus Wind Turbine: Proposal for a New Performance Prediction Model Based on Cfd. Energy, 36(8): 4919-4934. Doi:10.1016/j.energy.2011.05.036
  31. Mohamed, M., A. Ali and A. Hafiz, 2015. Cfd Analysis for H-Rotor Darrieus Turbine as a Low Speed Wind Energy Converter. Engineering Science and Technology, an International Journal, 18(1): 1-13. Doi:10.1016/j.jestch.2014.08.002
  32. Sun, X., Y. Wang, Q. An, Y. Cao, G. Wu and D. Huang, 2014. Aerodynamic Performance and Characteristic of Vortex Structures for Darrieus Wind Turbine. I. Numerical Method and Aerodynamic Performance. Journal of Renewable and Sustainable Energy, 6(4): 043134. Doi:10.1063/1.4893775
  33. Farassat, F., Derivation of Formulations 1 and 1a of Farassat. 2007.
  34. Fadil, J. and M. Ashari, 2017. Performance Comparison of Vertical Axis and Horizontal Axis Wind Turbines to Get Optimum Power Output. in 2017 15th international conference on quality in research (QiR): International Symposium on Electrical and Computer Engineering, pp:  429-433. Doi:10.1109/QIR.2017.8168524.
  35. Farassat, F., 1987. Quadrupole Source in Prediction of the Noise of Rotating Blades-a New Source Description. in 11th Aeroacoustics Conference, pp:  2675. Doi:10.2514/6.1987-2675
  36. Farassat, F. and K.S. Brentner, 1988. The Uses and Abuses of the Acoustic Analogy in Helicopter Rotor Noise Prediction. Journal of the American Helicopter Society, 33(1): 29-36. Doi:10.4050/JAHS.33.29