Document Type : Review paper

Authors

1 Saba Power and Energy Group, Tehran, Iran

2 Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran

3 Faculty of Law and Political Science, Science of Research Branch, Islamic Azad University, Tehran, Iran

4 Faculty of Governance, University of Tehran, Tehran, Iran

5 Department of Electrical and computer Engineering, Science of Research Branch, Islamic Azad University, Tehran, Iran

6 Department of Biosystems Engineering, Tarbiat Modares University, Tehran, Iran

Abstract

With countries throughout middle east and north Africa pursuing ambitious targets for a transition to renewable energies, the political economy of a region predominantly analyzed through the prism of fossil fuels is on the verge of radical change. As hydrocarbon prices decline, the low-cost producers of Middle East have an advantage and should be the last to leave the market. The world will demand proportionally more of the region’s oil and gas. Nearly half of the world's oil is located in Middle East, which has long been referred to as the "energy axis" of the planet. In the meanwhile, as the nations of this area progress towards the future, they have realized the need of supplying energy from these other sources, such that the utilization of renewable energy sources, such as the sun, has attracted considerable interest. This study analyzed and assessed these attractions in addition to five middle eastern nations and Turkey, which is located in middle east, close proximity to this area. The approach of comparing government incentives in the development of renewable power plants was used in this study. The final findings revealed the current status of this energy in the target nations. This study may give the target countries and other nations in the middle east with a wealth of information for the formulation of effective policies for the use of renewable resources.

Keywords

Main Subjects

  1. Esmaeili Shayan, M., Najafi, G., Ghobadian, B., Gorjian, S., and Mazlan, M., 2022. A novel approach of synchronization of the sustainable grid with an intelligent local hybrid renewable energy control. International Journal of Energy and Environmental Engineering , pp.1–12. Doi: 10.1007/S40095-022-00503-7
  2. Esmaeili Shayan, M., Najafi, G., Ghobadian, B., Gorjian, S., Mazlan, M., Samami, M., and Shabanzadeh, A., 2022. Flexible Photovoltaic System on Non-Conventional Surfaces: A Techno-Economic Analysis. Sustainability, 14(6), pp.3566. Doi: 10.3390/SU14063566
  3. Esmaeili Shayan, M., Najafi, G., Ghobadian, B., Gorjian, S., and Mazlan, M., 2022. Sustainable Design of a Near-Zero-Emissions Building Assisted by a Smart Hybrid Renewable Microgrid. International Journal of Renewable Energy Development, 11(2), pp.471–480. Doi: 10.14710/IJRED.2022.43838
  4. Rathore, P.K.S., Chauhan, D.S., and Singh, R.P., 2019. Decentralized solar rooftop photovoltaic in India: On the path of sustainable energy security. Renewable Energy, 131, pp.297–307. Doi: 10.1016/J.RENENE.2018.07.049
  5. Griffiths, S., and Mills, R., 2016. Potential of rooftop solar photovoltaics in the energy system evolution of the United Arab Emirates. Energy Strategy Reviews, 9, pp.1–7. Doi: 10.1016/J.ESR.2015.11.001
  6. Solangi, K.H., Islam, M.R., Saidur, R., Rahim, N.A., and Fayaz, H., 2011. A review on global solar energy policy. Renewable and Sustainable Energy Reviews, 15(4), pp.2149-2163. Doi: 10.1016/j.rser.2011.01.007
  7. Kural, D., Ara, S., Tasarımının, O., and Analizi, B., 2020. An Analysis of the Optimal Design of Feed-in Tariff Policy for Photovoltaic Investments in Turkey. Sosyoekonomi, 28(46), pp.425–444. Doi: 10.17233/SOSYOEKONOMI.2020.04.20
  8. Sgouridis, S., Abdullah, A., Griffiths, S., Saygin, D., Wagner, N., Gielen, D., Reinisch, H., and McQueen, D., 2016. RE-mapping the UAE’s energy transition: An economy-wide assessment of renewable energy options and their policy implications. Renewable and Sustainable Energy Reviews, 55, pp.1166–1180. Doi: 10.1016/J.RSER.2015.05.039
  9. Mokri, A., Aal Ali, M., and Emziane, M., 2013. Solar energy in the United Arab Emirates: A review. Renewable and Sustainable Energy Reviews, 28, pp.340–375. Doi: 10.1016/J.RSER.2013.07.038
  10. Sgouridis, S., Griffiths, S., Kennedy, S., Khalid, A., and Zurita, N., 2013. A sustainable energy transition strategy for the United Arab Emirates: Evaluation of options using an Integrated Energy Model. Energy Strategy Reviews, 2(1), pp.8–18. Doi: 10.1016/J.ESR.2013.03.002
  11. Kılıç, U., and Kekezoğlu, B., 2022. A review of solar photovoltaic incentives and Policy: Selected countries and Turkey. Ain Shams Engineering Journal, 13(5), pp.101669. Doi: 10.1016/j.asej.2021.101669
  12. Sgouridis, S. and Csala, D., 2014. A framework for defining sustainable energy transitions: principles, dynamics, and implications. Sustainability, 6(5), pp.2601-2622. Doi: 10.2139/SSRN.2361603
  13. Patlitzianas, K.D., Doukas, H., and Psarras, J., 2006. Enhancing renewable energy in the Arab States of the Gulf: Constraints & efforts. Energy Policy, 34(18), pp.3719–3726. Doi: 10.1016/J.ENPOL.2005.08.018
  14. Mokhtar, M., Ali, M.T., Bräuniger, S., Afshari, A., Sgouridis, S., Armstrong, P., and Chiesa, M., 2010. Systematic comprehensive techno-economic assessment of solar cooling technologies using location-specific climate data. Applied Energy, 87(12), pp.3766–3778. Doi: 10.1016/J.APENERGY.2010.06.026
  15. Kazim, A.M., 2007. Assessments of primary energy consumption and its environmental consequences in the United Arab Emirates. Renewable and Sustainable Energy Reviews, 11(3), pp.426–446. Doi: 10.1016/J.RSER.2005.01.008
  16. Lee, C.C., and Chang, C.P., 2007. Energy consumption and GDP revisited: A panel analysis of developed and developing countries. Energy Economics, 29(6), pp.1206–1223. Doi: 10.1016/J.ENECO.2007.01.001
  17. Alnaser, W.E., and Alnaser, N.W., 2011. The status of renewable energy in the GCC countries. Renewable and Sustainable Energy Reviews, 15(6), pp.3074–3098. Doi: 10.1016/J.RSER.2011.03.021
  18. Eissa, Y., Chiesa, M., and Ghedira, H., 2012. Assessment and recalibration of the Heliosat-2 method in global horizontal irradiance modeling over the desert environment of the UAE. Solar Energy, 86(6), pp.1816–1825. Doi: 10.1016/J.SOLENER.2012.03.005
  19. Dorvlo, A.S.S., Jervase, J.A., and Al-Lawati, A., 2002. Solar radiation estimation using artificial neural networks. Applied Energy, 71(4), pp.307–319. Doi: 10.1016/S0306-2619(02)00016-8
  20. Rahman, F., 2021. UAE’s renewable energy capacity set to increase to 9GW by 2025. Update: Feb 11, 2021, Available at: https://www.thenationalnews.com/business/energy/uae-s-renewable-energy-capacity-set-to-increase-to-9gw-by-2025-1.1164561
  21. Esmaeili Shayan, M., Hayati, M.R., Najafi, G., and Esmaeili Shayan, S., 2022. The Strategy of Energy Democracy and Sustainable Development: Policymakers and Instruments. Iranian (Iranica) Journal of Energy & Environment, 13(2), pp.185–201. Doi: 10.5829/IJEE.2022.13.02.10
  22. National Grid project, 2020. URL: https://u.ae/en/information-and-services/environment-and-energy/water-and-energy/electricity/national-grid-project
  23. Esmaeili Shayan, M., Najafi, G., Ghobadian, B., and Gorjian, S., 2022. Modeling the Performance of Amorphous Silicon in Different Typologies of Curved Building-integrated Photovoltaic Conditions. Iranian (Iranica) Journal of Energy & Environment, 13(1), pp.87–97. Doi: 10.5829/IJEE.2022.13.01.10
  24. Esmaeili Shayan, M., and Hojati, J., 2021. Floating Solar Power Plants: A Way to Improve Environmental and Operational Flexibility. Iranian (Iranica) Journal of Energy & Environment, (4), pp.337–348. Doi: 10.5829/IJEE.2021.12.04.07
  25. Esmaeili Shayan, M., Esmaeili Shayan, S., and Nazari, A., 2021. Possibility of supplying energy to border villages by solar energy sources. Energy Equipment and Systems, 9(3), pp.279–289. Doi: 10.22059/EES.2021.246079
  26. Pearl-Martinez, R., 2015. All Hands On Deck: Who’s Missing in the Clean Energy Workforce. In The Fletcher Forum. URL: http://www.fletcherforum.org/home/2016/8/23/fs3vy011ir50otfufof0lxe89wawap
  27. Dicce, R.P., and Ewers, M.C., 2021. Solar labor market transitions in the United Arab Emirates. Geoforum, 124(April), pp.54–64. Doi: 10.1016/j.geoforum.2021.05.013
  28. Irena, I.P., 2021. End-Of-Life Management: Solar Photovoltaic Panels, ISBN: 978-92-95111-99-8. Available at: https://www.irena.org/publications/2016/Jun/End-of-life-management-Solar-Photovoltaic-Panels
  29. Shayan, M.E., Najafi, G. and Nazari, A., 2021. The Biomass Supply Chain Network Auto-Regressive Moving Average Algorithm. International Journal of Smart Grid, 5, pp.15-22. Doi: 10.20508/IJSMARTGRID.V5I1.153.G135
  30. Juaidi, A., Montoya, F.G., Gázquez, J.A., and Manzano-Agugliaro, F., 2016. An overview of energy balance compared to sustainable energy in United Arab Emirates. Renewable and Sustainable Energy Reviews, 55, pp.1195–1209. Doi: 10.1016/j.rser.2015.07.024
  31. Esameili Shayan, M., Najafi, G., and Esameili shayan, S., 2021. Design of an Integrated Photovoltaic Site: Case of Isfahan’s Jarghouyeh photovoltaic plant. Journal of Energy Planning And Policy Research, 6(4), pp.229–250. Available at: http://epprjournal.ir/article-1-858-en.html
  32. Mezher, T., Dawelbait, G., and Abbas, Z., 2012. Renewable energy policy options for Abu Dhabi: Drivers and barriers. Energy Policy, 42, pp.315–328. Doi: 10.1016/J.ENPOL.2011.11.089
  33. Choucri, N., Goldsmith, D. and Mezher, T., 2010. Renewable energy policy in an oil-exporting country: the case of the United Arab Emirates. Renewable Energy Law and Policy Review, pp.77-86. Available at: https://www.researchgate.net/publication/291159310_Renewable_energy_policy_in_an_oil-exporting_country_The_case_of_the_United_Arab_Emirates (accessed Dec. 17, 2022)
  34. Al-Amir, J., and Abu-Hijleh, B., 2013. Strategies and policies from promoting the use of renewable energy resource in the UAE. Renewable and Sustainable Energy Reviews, 26, pp.660–667. Doi: 10.1016/J.RSER.2013.06.001
  35. Ghasemzadeh, F., Esmaeilzadeh, M., and Esmaeili shayan, M., 2020. Photovoltaic Temperature Challenges and Bismuthene Monolayer Properties. International Journal of Smart Grid, 4(4), pp.190–195. Doi: 10.20508/ijsmartgrid.v4i4.131.g109
  36. Harder, E., and Gibson, J.M.D., 2011. The costs and benefits of large-scale solar photovoltaic power production in Abu Dhabi, United Arab Emirates. Renewable Energy, 36(2), pp.789–796. Doi: 10.1016/j.renene.2010.08.006
  37. Shayan, M.E. and Ghasemzadeh, F., 2020. Nuclear power plant or solar power plant. In Nuclear Power Plants-The Processes from the Cradle to the Grave. IntechOpen. Doi: 10.5772/intechopen.92547
  38. Shayan, M.E., 2020. Solar energy and its purpose in net-zero energy building. Zero-Energy Buildings—New Approaches and Technologies, pp.14. Doi: 10.5772/intechopen.93500
  39. Ghasemzadeh, F. and Esmaeili Shayan, M., 2020. Nanotechnology in the Service of Solar Energy Systems. Nanotechnology and the Environment. IntechOpen. Doi: 10.5772/intechopen.93014.
  40. Turkey Ministry of Energy and Natural Resources. URL: https://www.enerji.gov.tr/homepage/
  41. Azadbakht, M., Esmaeilzadeh, E., and Esmaeili-Shayan, M., 2015. Energy consumption during impact cutting of canola stalk as a function of moisture content and cutting height. Journal of the Saudi Society of Agricultural Sciences, 14(2), pp.147–152. Doi: 10.1016/j.jssas.2013.10.002
  42. Couture, T., and Gagnon, Y., 2010. An analysis of feed-in tariff remuneration models: Implications for renewable energy investment. Energy Policy, 38(2), pp.955–965. Doi: 10.1016/J.ENPOL.2009.10.047
  43. Esmaeili shayan, M., Najafi, G., and Banakar, A. ahmad, 2017. Power Quality in Flexible Photovoltaic System on Curved Surfaces. Journal of Energy Planning And Policy Research, 3(7), pp.105–136. [In persian]
  44. Duman, A.C., and Güler, Ö., 2020. Economic analysis of grid-connected residential rooftop PV systems in Turkey. Renewable Energy, 148, pp.697–711. Doi: 10.1016/j.renene.2019.10.157
  45. Tech, T., 2018. Final Report Turkey: Rooftop Solar PV Market Assessment. Available at: https://documents.worldbank.org/curated/en/318801537299381731/pdf/123784-PUBLIC-repl-A2I.pdf
  46. Önder, H.G., 2021. Renewable energy consumption policy in Turkey: An energy extended input-output analysis. Renewable Energy, 175, pp.783–796. Doi: 10.1016/j.renene.2021.05.025
  47. Enerji ve Tabii Kaynaklar Bakanlı gı Elektrik, Energy and Natural Resources. URL: https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik
  48. Kazem, H.A., 2011. Prospects of potential renewable and clean energy in Oman. International Journal of Electronics, Computer and Communications Technologies, 1(2), pp.25–29. Available at: https://journal.uniten.edu.my/index.php/ijecct/article/view/13
  49. Kazem, H.A., Albadi, M.H., Al-Waeli, A.H.A., Al-Busaidi, A.H., and Chaichan, M.T., 2017. Techno-economic feasibility analysis of 1MW photovoltaic grid connected system in Oman. Case Studies in Thermal Engineering, 10, pp.131–141. Doi: 10.1016/j.csite.2017.05.008
  50. Alhousni, F.K., Ismail, F.B., Okonkwo, P.C., Mohamed, H., Okonkwo, B.O. and Al-Shahri, O.A., 2022. A review of PV solar energy system operations and applications in Dhofar Oman. AIMS Energy, 10(4), pp.858-884. Doi: 10.3934/energy.2022039
  51. Ministry of National Economy, 2023. URL: http://www.moneoman.gov.om/
  52. The Authority for Electricity Regulation Oman, 2023. URL: http://www.aer-oman.org
  53. Al-Saqlawi, J., Madani, K., and Mac Dowell, N., 2018. Techno-economic feasibility of grid-independent residential roof-top solar PV systems in Muscat, Oman. Energy Conversion and Management, 178, pp.322–334. Doi: 10.1016/J.ENCONMAN.2018.10.021
  54. Kazem, H.A., and Khatib, T., 2013. Techno-economical assessment of grid connected photovoltaic power systems productivity in Sohar, Oman. Sustainable Energy Technologies and Assessments, 3, pp.61–65. Doi: 10.1016/J.SETA.2013.06.002
  55. Al-Saadi, S., and Krarti, M., 2015. Evaluation of Optimal Hybrid Distributed Generation Systems for an Isolated Rural Settlement in Masirah Island, Oman, Distributed Generation and Alternative Energy Journal, 30(2), pp.23–42. Doi: 10.1080/21563306.2015.11431662
  56. Abdul-Wahab, S., Charabi, Y., Al-Mahruqi, A.M., Osman, I., and Osman, S., 2019. Selection of the best solar photovoltaic (PV) for Oman. Solar Energy, 188(June), pp.1156–1168. Doi: 10.1016/j.solener.2019.07.018
  57. Oman Population in 2022. URL: https://www.worldometers.info
  58. Yu, T.C., and Chien, T.S., 2009. Analysis and simulation of characteristics and maximum power point tracking for photovoltaic systems. Proceedings of the International Conference on Power Electronics and Drive Systems, , pp.1339–1344. Doi: 10.1109/PEDS.2009.5385670
  59. Kazem, H.A., 2011. Renewable energy in Oman: Status and future prospects. Renewable and Sustainable Energy Reviews, 15(8), pp.3465–3469. Doi: 10.1016/j.rser.2011.05.015
  60. Shayan, M.E., Najafi, G., Ghobadian, B., Gorjian, S., Mamat, R., and Ghazali, M.F., 2022. Multi-microgrid optimization and energy management under boost voltage converter with Markov prediction chain and dynamic decision algorithm. Renewable Energy, 201, pp.179–189. Doi: 10.1016/J.RENENE.2022.11.006
  61. Hepbasli, A., and Alsuhaibani, Z., 2011. A key review on present status and future directions of solar energy studies and applications in Saudi Arabia. Renewable and Sustainable Energy Reviews, 15(9), pp.5021–5050. Doi: 10.1016/j.rser.2011.07.052
  62. Tabassum, S., Rahman, T., Ul Islam, A., Rahman, S., Dipta, D.R., Roy, S., Mohammad, N., Nawar, N., and Hossain, E., 2021. Solar Energy in the United States: Development, Challenges and Future Prospects. Energies, 14(23), pp.8142. Doi: 10.3390/EN14238142
  63. US Energy Information Administration, 2010. URL: http://tonto.eia.doe.gov/country/%0Aindex.cfm
  64. Al-Douri, Y., and Abed, F.M., 2016. Solar energy status in Iraq: Abundant or not - Steps forward. Journal of Renewable and Sustainable Energy, 8(2). Doi: 10.1063/1.4947076
  65. World Bank Group, 2018. Iraq Economic Monitor, Spring 2018: From War to Reconstruction and Economic Recovery. World Bank., Washington, DC. Available at: https://www.researchgate.net/publication/325514557_Iraq_Economic_Monitor_From_War_to_Reconstruction_and_Economic_Recovery_With_a_Special_Focus_on_Energy_Subsidy_Reform (accessed Dec. 25, 2022)
  66. Khatteeb, L. and Istepanian, H., 2015. Turn a light on: electricity sector reform in Iraq. Brookings Institution. Brookings Doha Center. Available at: https://www.researchgate.net/publication/273949491_Turn_a_Light_on_Electricity_Sector_Reform_in_Iraq (accessed Dec. 25, 2022)
  67. Esameili Shayan, M., Najafi, G., and Esmaeili Shayan, S., 2023. Smart Micro-Grid Electrical Energy Management: Techno-Economic Assessment. Engineering and Energy Management, 13(1), pp.90–101. Available at: https://energy1.kashanu.ac.ir/article_113605_fad303eec3aa22b2d08f8a932d595f46.pdf?lang=en [In persian]
  68. Hussein, I.I., Essallah, S., and Khedher, A., 2022. Improvement of the Iraqi Super Grid Performance Using HVDC/HVAC Links by the Integration of Large-Scale Renewable Energy Sources. Energies, 15(3), pp.1142. Doi: 10.3390/EN15031142
  69. Aziz, A.S., Tajuddin, M.F.N., Adzman, M.R., Mohammed, M.F., and Ramli, M.A.M., 2020. Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: A case study of Iraq. Energy, 191, pp.116591. Doi: 10.1016/j.energy.2019.116591
  70. Esmaeili Shayan, M., Najafi, G., and Lorenzini, G., 2022. Phase change material mixed with chloride salt graphite foam infiltration for latent heat storage applications at higher temperatures and pressures. International Journal of Energy and Environmental Engineering, 13(2), pp.739-749. Doi: 10.1007/s40095-021-00462-5
  71. Esmaeili Shayan, M., and Hayati, M.R., 2023. Thermal Performance and Heat Dynamics Energy and Exergy of Integrated Asphalt Collector Storage: Sources of Thermal Energy, and Thermoelectric Energy. Iranian Journal of Energy and Environment, 14(1), pp.17–25. Doi: 10.5829/IJEE.2023.14.01.03
  72. Eslami, M., and Nahani, P., 2021. How policies affect the cost-effectiveness of residential renewable energy in Iran: A techno-economic analysis for optimization. Utilities Policy, 72(July), pp.101254. Doi: 10.1016/j.jup.2021.101254
  73. Mostafa Nosratabadi, S., Hemmati, R., Bornapour, M., and Abdollahpour, M., 2021. Economic evaluation and energy/exergy analysis of PV/Wind/PEMFC energy resources employment based on capacity, type of source and government incentive policies: Case study in Iran. Sustainable Energy Technologies and Assessments, 43, pp.100963. Doi: 10.1016/j.seta.2020.100963
  74. Ghorashi, A.H., and Maranlou, H., 2021. Essential infrastructures and relevant policies for renewable energy developments in oil-rich developing countries: Case of Iran. Renewable and Sustainable Energy Reviews, 141(May 2020), pp.110839. Doi: 10.1016/j.rser.2021.110839
  75. Esmaeili shayan, M., Najafi, G., and Esmaeili Shayan, S., 2023. Microgrids Energy Management System Based on Renewable Energy. Amirkabir Journal of Mechanical Engineering. Doi: 10.22060/mej.2023.20755.7346
  76. SATBA, 2022. The share of renewable power plants in Iran, Available at :https://www.satba.gov.ir/fa/satba/information
  77. Council, E., 2022. Investment permit for the construction of a solar power plant, [Online] Available at: https://qavanin.ir/Law/TreeText/297472
  78. Parliament, 2022. The Executive Regulations of Article 16 of the Knowledge-Based Production Jump Law, Available at: https://dotic.ir/news/12847