Optimization of Residential Spatial Configuration based on Energy Performance, Daylight Brightness, and Thermal Comfort through Pareto Evolutionary Algorithm, Case Study: Mashhad City Climate
All important decisions that affect the thermal performance of the building are made in the early stages of design. Accordingly, in this research, the initial stage of architectural design which is related to space plan was targeted. The aim of this research is the perfect approach to evaluate, and optimize the energy a set of alternative spatial layout solutions through the functional computational design model. The method of this research includes the production of coherent design solutions and the evaluation and optimization of the energy performance of the selected solutions. In the first part, space allocation at a level produces the plan through an evolutionary technique. In the next step, certain plans were evaluated for energy performance, performance rank, and optimization. The energy simulation tool is Honeybee and Ladybug plugins,. The optimization tool is Pareto Evolutionary Algorithm in the Octopus plugin. The reproduction rate, the mutation rate and the possibility of mutation were 0.9, 0.8 and 0.2, respectively. The results showed that each algorithm is a suitable tool for design solutions, thermal performance of floor plans, helping architects’ perspective in the decision-making process, and speeding up the design process. Finally, based on the optimization, the final result of the research algorithm is 70 elite answers in the Pareto front. Only during the Pareto front optimal responses, energy consumption can be reduced by more than 30%; in daylight time and more than 39% improvement was achieved.
Janda, K., 2009. Worldwide status of energy standards for buildings: a 2009 update, Proceedings of the European Council for an Energy Efficient Economy (ECEEE) Summer Study, pp. 1-6.
Kanters, J., Horvat, M. and Dubois, M.-C., 2014. Tools and methods used by architects for solar design, Energy and Buildings, 68, pp. 721-731. Doi:10.1016/j.enbuild.2012.05.031
Attia, S., Gratia, E., De Herde, A. and Hensen, J. L., 2012. Simulation-based decision support tool for early stages of zero-energy building design, Energy and Buildings, 49, pp. 2-15. Doi:10.1016/j.enbuild.2012.01.028
Michalek, J., Choudhary, R. and Papalambros, P., 2002. Architectural layout design optimization, Engineering Optimization, 34(5), pp. 461-484. Doi:10.1080/03052150214016
Du, T., Jansen, S., Turrin, M. and van den Dobbelsteen, A., 2020. Effects of architectural space layouts on energy performance: A review, Sustainability, 12(5), pp. 1829. Doi:10.3390/su12051829
Ekici, B., Cubukcuoglu, C., Turrin, M. and Sariyildiz, I. S., 2019. Performative computational architecture using swarm and evolutionary optimisation: A review, Building and Environment, 147, pp. 356-371. Doi:10.1016/j.buildenv.2018.10.023
Rodrigues, E., Gaspar, A. R. and Gomes, Á., 2014. Automated approach for design generation and thermal assessment of alternative floor plans, Energy and Buildings, 81, pp. 170-181. Doi:10.1016/j.enbuild.2014.06.016
Wang, X.-Y., Yang, Y. and Zhang, K., 2018. Customization and generation of floor plans based on graph transformations, Automation in Construction, 94, pp. 405-416. Doi:10.1016/j.autcon.2018.07.017
Yi, H., 2016. User-driven automation for optimal thermal-zone layout during space programming phases, Architectural Science Review, 59(4), pp. 279-306. Doi:10.1080/00038628.2015.1021747
Sharpe, R., Marksjö, B., Mitchell, J. and Crawford, J., 1985. An interactive model for the layout of buildings, Applied Mathematical Modelling, 9(3), pp. 207-214. Doi:10.1016/0307-904X(85)90009-5
Rodrigues, E., Gaspar, A. R. and Gomes, Á., 2013. An evolutionary strategy enhanced with a local search technique for the space allocation problem in architecture, Part 1: Methodology, Computer-Aided Design, 45(5), pp. 887-897. Doi:10.1016/j.cad.2013.01.001
Dino, I. G. and Üçoluk, G., 2017. Multiobjective design optimization of building space layout, energy, and daylighting performance, Journal of Computing in Civil Engineering, 31(5), pp. 04017025. Doi:10.1061/(ASCE)CP.1943-5487.0000669
Pacheco, R., Ordóñez, J. and Martínez, G., 2012. Energy efficient design of building: A review, Renewable and Sustainable Energy Reviews, 16(6), pp. 3559-3573. Doi:10.1016/j.rser.2012.03.045
Gupta, R. and Ralegaonkar, R., 2004. Estimation of beam radiation for optimal orientation and shape decision of buildings in India, Architectural Journal of Institution of Engineers India, 85, pp. 27-32.
Plörer, D., Hammes, S., Hauer, M., van Karsbergen, V. and Pfluger, R., 2021. Control strategies for daylight and artificial lighting in office buildings—A bibliometrically assisted review, Energies, 14(13), pp. 3852. Doi:10.3390/en14133852
Amasyali, K. and El-Gohary, N. M., 2018. A review of data-driven building energy consumption prediction studies, Renewable and Sustainable Energy Reviews, 81, pp. 1192-1205. Doi:10.1016/j.rser.2017.04.095
Wang, L., Greenberg, S., Fiegel, J., Rubalcava, A., Earni, S., Pang, X., Yin, R., Woodworth, S. and Hernandez-Maldonado, J., 2013. Monitoring-based HVAC commissioning of an existing office building for energy efficiency, Applied Energy, 102, pp. 1382-1390. Doi:10.1016/j.apenergy.2012.09.005
Fernandez Bandera, C. and Ramos Ruiz, G., 2017. Towards a new generation of building envelope calibration, Energies, 10(12), pp. 2102. Doi:10.3390/en10122102
Zuhaib, S., Hajdukiewicz, M. and Goggins, J., 2019. Application of a staged automated calibration methodology to a partially-retrofitted university building energy model, Journal of Building Engineering, 26, pp. 100866. Doi:10.1016/j.jobe.2019.100866
Andrade-Cabrera, C., Burke, D., Turner, W. J. and Finn, D. P., 2017. Ensemble Calibration of lumped parameter retrofit building models using Particle Swarm Optimization, Energy and Buildings, 155, pp. 513-532. Doi:10.1016/j.enbuild.2017.09.035
Ferrara, M., Lisciandrello, C., Messina, A., Berta, M., Zhang, Y. and Fabrizio, E., 2020. Optimizing the transition between design and operation of ZEBs: Lessons learnt from the Solar Decathlon China 2018 SCUTxPoliTo prototype, Energy and Buildings, 213, pp. 109824. Doi:10.1016/j.enbuild.2020.109824
Carlon, E., Schwarz, M., Prada, A., Golicza, L., Verma, V. K., Baratieri, M., Gasparella, A., Haslinger, W. and Schmidl, C., 2016. On-site monitoring and dynamic simulation of a low energy house heated by a pellet boiler, Energy and Buildings, 116, pp. 296-306. Doi:10.1016/j.enbuild.2016.01.001
Li, W., Tian, Z., Lu, Y. and Fu, F., 2018. Stepwise calibration for residential building thermal performance model using hourly heat consumption data, Energy and Buildings, 181, pp. 10-25. Doi:10.1016/j.enbuild.2018.10.001
Trompoukis, X., Asouti, V., Kampolis, I. and Giannakoglou, K., 2012. CUDA implementation of Vertex-Centered, Finite Volume CFD methods on Unstructured Grids with Flow Control Applications, GPU Computing Gems Jade Edition: Elsevier, pp. 207-223. Doi:10.1016/B978-0-12-385963-1.00017-4
Zitzler, E., Laumanns, M. and Thiele, L., 2001. SPEA2: Improving the strength Pareto evolutionary algorithm, TIK-report, 103. Doi:10.3929/ethz-a-004284029
Ghasemzadeh, M., 2012. Dimensional criteria and design considerations of urban residential unit spaces. Tehran, Iran: Road, Housing and Urban Development Research Center.
Amrhein, V., Greenland, S. and McShane, B., 2019. Scientists rise up against statistical significance, Nature, 567(7748), pp. 305-307.
Ahmadi, J., Maddahi, S. M., & Mirzaei, R. (2023). Optimization of Residential Spatial Configuration based on Energy Performance, Daylight Brightness, and Thermal Comfort through Pareto Evolutionary Algorithm, Case Study: Mashhad City Climate. Iranica Journal of Energy & Environment, 14(3), 228-239. doi: 10.5829/ijee.2023.14.03.05
MLA
J. Ahmadi; S. M. Maddahi; R. Mirzaei. "Optimization of Residential Spatial Configuration based on Energy Performance, Daylight Brightness, and Thermal Comfort through Pareto Evolutionary Algorithm, Case Study: Mashhad City Climate". Iranica Journal of Energy & Environment, 14, 3, 2023, 228-239. doi: 10.5829/ijee.2023.14.03.05
HARVARD
Ahmadi, J., Maddahi, S. M., Mirzaei, R. (2023). 'Optimization of Residential Spatial Configuration based on Energy Performance, Daylight Brightness, and Thermal Comfort through Pareto Evolutionary Algorithm, Case Study: Mashhad City Climate', Iranica Journal of Energy & Environment, 14(3), pp. 228-239. doi: 10.5829/ijee.2023.14.03.05
VANCOUVER
Ahmadi, J., Maddahi, S. M., Mirzaei, R. Optimization of Residential Spatial Configuration based on Energy Performance, Daylight Brightness, and Thermal Comfort through Pareto Evolutionary Algorithm, Case Study: Mashhad City Climate. Iranica Journal of Energy & Environment, 2023; 14(3): 228-239. doi: 10.5829/ijee.2023.14.03.05