Palm Oil Mill Effluent Tertiary Treatment by Physicochemical Treatment Using Ferrous Sulphate

Authors

1 Sime Darby Research Sdn Bhd, 42900 Carey Island, Selangor, Malaysia

2 School of Industrial Technology, University Sains Malaysia, 11800 Pulau Pinang, Malaysia

Abstract

The palm oil milling industry in Malaysia will be imposed with more stringent treated waste water discharge requirement from currently at BOD of 100 ppm to BOD of 50 ppm and gradually to BOD of 20 ppm. Study was conducted to use Ferrous Sulphate as more economical coagulant to reduce the biological load for tertiary treatment in palm oil mill effluent treatment at laboratory and pilot scale facility to comply with the proposed new requirement.   The feed water that was aerobically treated POME with BOD of below 100 ppm was treated with various dosage of ferrous sulphate, from 250 to 2250 ppm. It was found that at laboratory jar-test, the required ferrous sulphate dosage to meet BOD-50 ppm requirement was at 750 ppm while BOD-20 ppm requirement was achieved when the ferrous sulphate dosage was at 1,750 ppm and did not produce hazardous activated sludge. The laboratory findings was scaled-up to pilot scale facility with the capacity of 7 ton/hour to evaluate  the  physicochemical  tertiary  treatment  based  on  continuous  system.  Ferrous  sulphate dosage at 1,000 ppm and 1,750 ppm were able to comfortably comply with the discharge limit of BOD-50 ppm and BOD-20 ppm, respectively.

Keywords


1.   MPOB Statistical Report, 2014. Overview of the Malaysian Oil Palm Industry 2014.

2.   FooK.Y. and  B.H. Hamee,. 2010. Insight into the applications of  palm  oil  mill  effluent:  A  renewable  utilization  of  the industrial agricultural waste. Renewable& Sustainable Energy Reviews, 14:1445–52.

3.   MaA.N., G. Singh, K.H. Lim, T. Leng, and L.K. David,1999. Oil palm and the environment: A Malaysian perspective. Kuala Lumpur : Malaysia Oil Palm Growers' Council, 13–26.

4.   GobiK. and V.M. Vadivellu, 2013. By-products of palm oil mill effluent   treatment   plant   –   A   step   towards   sustainability Renewable and Sustainable Energy Reviews, 28:788–803.

5.   ParveenF.R.,  P.S.  Rajeev,  M.H.  Ibrahim  and  N.  Esa,  2010. Review    of    current    palm    oil    mill    effluent    treatment: Vermicomposting  as  an  sustainable  practise.  World  Applied Sciences Journal, 11: 70-81.

6.   MaA.N.,   1999.   Environmental   Management   of   Palm   Oil Industry. Palm Oil Development, 30: 1-10.

7.   WuT.Y., A.W. Mohammad , J.M. Jahim, and N. Anuar, 2009. A  holistic  approach  to  managing  palm  oil  mill  effluent (POME): Biotechnological advances in the sustainable reuse of POME. Biotechnology Advances, 29: 40–52.

8.   WuT.Y., A.W. Mohammad , J.M. Jahim, and N. Anuar,2010. Pollution control technologies for the treatment of palm oil mill effluent  (POME)  through  end-of-pipe  processes.  Journal  of Environmental Management, 91:1467–1490.

9.   Laws  of  Malaysia,  1994.  Environmental  Quality  Act  1974  and Regulations, 4th   ed. MDC Sdn. Bhd, Malaysia.

10. LiewW.L.,M.A. Azraai, K. Muda, S.K. Loh, and A.C. Affam, 2015.   Conventional   methods   and   emerging   wastewater polishing technologies for palm oil mill effluent treatment: A review. Journal of Environmental Management,149: 222–235.

11. YaserA.Z.,  B.  Nurmin,  S.  Roslan,  2013. Coagulation/flocculation  of  aenerobically treated  POME  :  A review in Development in Sustainable Chemical & Bioprocess Technology, Springer, New York. 3-11.

12. JamiM.S., A.M. Suleyman, and  M.I.Oseni, 2012. Comparative Study of the Use of Coagulants in Biologically Treated Palm Oil MillEffluent (POME). Advances in Natural and Applied Sciences, 646-650.

13. Nik NorulainiN.A., A. Zuhairi, A., M.I. Hakimi, and M. Omar, 2001. Chemical Coagulation of setileable solid-free POME for organic  loading  reduction.  Journal  of  Industrial  Technology, 10:55-72.

14. McNultyG.S.. Manufacturing of Titanium Dioxide, Huntsman Pigments, Tioxide Europe Ltd.

15. SahuO.P.and     P.K.  Chaudrari,  2013.Review  on  Chemical treatment  of  Industrial  Waste  Water.  Journal  of  Applied Sciences and Environmental Management,17 : 241-257.

16. LoloeiM., H. Alidadi, G. Nekonam, and Y. Kor, 2014. Study of the  coagulation  process  in  wastewater  treatment  of  dairy industries.   International   Journal   of   Environmental   Health Engineering , 3:12.

17. KushwahaJ.P.,    V.    Chandra    Srivastava    ,andI.D.    Mall, 2010.Treatment of dairy wastewater by inorganic coagulants: Parametric and disposal studies. Water Research, 44:5867-74.

18. Georgiou D., A. Aivazidis, J. Hatiras, and K. Gimouhopoulos, 2003. Treatment of cotton textile wastewater using lime and ferrous sulfate. Water Research,37:2248-50.

19. BokenE., 1955.  Effect  of  Ferrous  Sulphate  on  the  available Manganese in soil and the uptake of Managanese by the plant Plant & Soil, 6: 97-112.

20. LeeC.S., L. Robinson , and M.F. Chong, 2014. A review on application of flocculants in wastewater treatment. Process Safety and Environmental Protection, 8: 18-23.