Influence of Different Steam Cooling Techniques for High Pressure Turbine Blades on the Performance of Gas Turbine

Document Type : Original Article


1 Department of Mechanical Engineering, R.V.R & J.C College of Engineering, Guntur, India

2 Department of Marine Engineering, A.U. College of Engineering, Visakhapatnam, India


Gas turbines are always intended to give more specific work output for which continuous exposure to hot combustion gases is necessary. To increase the lifespan of the turbine blades active cooling should be applied to the High Pressure (HP) turbine blades. In the present work, a simple open cycle gas turbine is modeled to carry out thermodynamic analysis with different open loop steam cooling techniques: steam internal convection cooling (SICC), steam film cooling (SFC) and steam transpiration (STC) cooling. The effect of Turbine inlet temperature (TIT), Turbine blade temperature (T_b), and Compressor pressure ratio (CPR) on the coolant flow requirement and effect of T_b on the performance are estimated. The entire analysis is carried out with contemplation of variable specific heat (VSH) along with constant specific heats (CSH) for air and gas. Between VSH and CSH approaches, the former analysis leads to better performance from the first and second law efficiencies point of view. Irreversibility and Entropy generation rate are maximum in the combustor and they are less for VSH case in all cooling schemes and are decreased by 38.53%, 40.01%, and 40.40% for SICC, SFC and STC schemes respectively when compared with CSH(at TIT=1580 K, T_b=1123 K, CPR=19.1) analysis.


1.    Hüseyin Kurt, ZiyaddinRecebli and EnginGedik, 2008. Performance Analysis of Open Cycle Gas Turbines, Int. J. Energy Res., 33: 285–294. doi:10.1002/er.1472
2.    M.  M.  Rahman,  Thamir  K.  Ibrahim1  and  Ahmed  N. Abdalla, 2011. Thermodynamic Performance Analysis of Gas Turbine Power Plant, Int. J. Phys Sci., 6(14): 3539–50. DOI: 10.5897/IJPS11.272
3.    Tara Chand V., Ravi Sankar B. and RangarayaChowdary J., 2013. Exergy Analysis of Gas Turbine Power Plant, International Journal of Engineering Trends and Technology, 4(9): 3991-3993.
4.    Naga Bhushana Rao V, Niranjan Kumar I N and Bala Prasad K, 2014. Failure Analysis of Gas Turbine Blades in a Gas Turbine Engine Used For Marine Applications, Int. J. of Engineering, Science and Technology, 6 (1): 43-48.
5.    Naga Bhushana Rao V, Niranjan Kumar I N, Madhulata N and Abhijeet A, 2014. Mechanical Analysis of 1st Stage Marine Gas Turbine Blade, International Journal of Advanced Science and Technology, 68: 57-64.
6.    Naga Bhushana Rao V., Niranjan Kumar I.N., Bala Prasad K.,  Madhulata N. and Naresh Gurajarapu, 2014. Failure Modes/Mechanisms in Turbine Blades of a Gas Turbine Engine –An Overview, International Journal of Engineering Research and Development, 10: 48-57.
7.    J. F. Louis, K. Hiraoka and M. A. El Masri, 1983. A Comparative Study of the Influence of Different Means of Turbine Cooling on  Gas  Turbine Performance,  ASME Paper No. 83-GT-180.
8.    Singh, Onkar, and B. N. Prasad. "Influence of different means of turbine blade cooling on the thermodynamic performance of combined cycle." Applied Thermal Engineering 28, no. 17-18 (2008): 2315-2326.
9.    M.A.   El-Masri,   1986.   On   Thermodynamic   of   Gas Turbines Cycle – Part-2 – A Model for Expansion in Cooled Turbines, J. Eng. Gas Turbines Power, 108 (1):151–159. doi:10.1115/1.3239862
10.   M.A. El-Masri, 1988. GASCAN-An Interactive Code for Thermal Analysis of Gas Turbine Systems, J. Eng. Gas Turbines Power, 110(2): 201-209. doi:10.1115/1.3240104
11.   O.   Bolland   and   J.F.   Stadaas,   1995.   Comparative Evaluation of Combined Cycles and Gas Turbine Systems With Water Injection, Steam Injection, And Recuperation, J. Eng. Gas Turbines Power, 117(1): 138-145. doi:10.1115/1.2812762
12.   Sanjay, Onkar Singh and B.N. Prasad, 2008. Influence of Different Means of Turbine Blade Cooling on The Thermodynamic Performance of Combined Cycle, Appl. Therm Eng., 28: 2315-2326.
13. Sanjay Kumar and Onkar Singh, 2013. Performance Evaluation of Gas-Steam Combined Cycle Having Transpiration Cooled Gas Turbine, Distributed Generation&   Alternative   Energy   Journal,   28(2):   43-60.   doi:10.1080/21563306.2013.10677550
14. Bassily   A.M.,   2013.   Modeling,   Analysis,   and Modifications of Different GT Cooling Techniques For Modern Commercial Combined Cycle Power Plants With Reducing The Irreversibility of The HRSG, ApplTherm Eng., 53(1): 131–146.
15. Jury Polezhaev, 1997. The Transpiration Cooling For Blades of High Temperatures Gas Turbine, Energy Conversionand Management, 38: 1123-1133.
16.   Facchini B., 1999. Cooled Expansion in Gas Turbines: A Comparison of Analysis Methods, Energy Conversionand Management, 40(11): 1207-1224.
17.   Bruno Facchini, Giovanni Ferrara and  Luca Innocenti, 2000. Blade Cooling Improvement For Heavy Duty Gas Turbine: The Air Coolant Temperature Reduction and The Introduction of Steam and Mixed Steam/Air Cooling, International Journal of Thermal Sciences, 39(1): 74-84.
18. Mohammad H. Albeirutty, Abdullah S. Alghamdi and Yousef S.Najjar, 2004. Heat Transfer Analysis For A Multistage Gas Turbine Using Different Blade-Cooling Schemes, Applied Thermal Engineering, 24(4): 563–577.
19.   Yousef S.H Najjar, Abdullah S Alghamdi and Mohammad H Al-Beirutty, 2004. Comparative Performance of Combined Gas Turbine Systems Under Three Different Blade Cooling Schemes, Applied Thermal Engineering, 24(13):1919–1934.
20.   Harlock  J.  H.,  2000.  The  Basic  Thermodynamics  of Turbine Cooling, J. Turbomach, 123(3): 583-592. doi:10.1115/1.1370156
21.   Horlock J. H., Watson  D. T., and  Jones T. V., 2001. Limitation on Gas Turbines Performance Imposed by Large Turbine Cooling Flows, J. Eng. Gas Turbines Power, 123(3): 487-494. doi:10.1115/1.1373398
22.   J.P. Yadav and O. Singh, 2000. Thermodynamic Analysis of Air Cooled Simple Gas/Steam Combined Cycle Plant. IE(I) Journal MC.2000, 86: 217-222.
23.   Meeta Sharma and Onkar Singh, 2017. Investigations for performance enhancement of dual pressure HRSG in gas/steam combined cycle power plants, International Journal of Ambient Energy, 38(4): 339-346. doi:10.1080/01430750.2015.1100680
24. Abdul  GhafoorMemon,  Rizwan  Ahmed  Memon, KhanjiHarijan and Muhammad Aslam Uqaili, 2014. Thermo-environmental analysis of an open cycle gas turbine power plant with regression modeling and optimization, Journal of Energy Institute, 87(5): 81-88. doi: 10.1016/j.joei.2014.03.023
25.   Kristin Jordal, Olav Bollard and Ake Klang, 2004. Aspects of Cooled Gas Turbine Modeling for the Semi-Closed O2/CO2 Cycle With CO2 Capture, Journal of Engineering for Gas Turbines and Power, 126(3): 507-515.