Document Type : Original Article


1 Department of Biology and Environmental Science, Faculty of Health and Life Science, Linnaeus University, 39182 Kalmar, Sweden

2 Department of Water Management, Estonian University of Life Sciences, Tartu, Estonia

3 Department of Environmental Technology, Kaunas University of Technology, Kaunas, Lithuania


Mining landfills and open dumpsites is associated with (40-70% by mass) fine fraction of particle sizes less than 20 or 10 mm. Soil and trace elements of considerable concentrations typically dominate the composition of this fraction. In the present paper, a modified three steps sequential extraction procedure was used to fractionate Cu, Zn and Cr in the fine fraction of waste sampled from Högbytorp (Sweden) and Torma (Estonia) landfills. The results showed that the major concentrations of Cu (98.8 and 98.6 wt%) and Cr (98.5% and 98.4 wt %) in fines from Högbytorp and Torma landfills, respectively. These data were found associated to the residual fraction. Noticeable concentrations of Cu and Cr were also found associated within the water -soluble fraction, which could be regarded as a potential risk. The Zn displayed different behavior by distributing in all the sequential extraction fractions in the fine fractions from the two landfills. Specifying the metals content using this method is essential to explore the valorization as well as the potential environmental risks by these fines fractions.


  1. Kaartinen T., Sormunen K., Rintala J. (2013). Case study on sampling, processing and characterization of landfilled municipal solid waste in the view of landfill mining. Journal of Cleaner Production 55: 56–66.
  2. Masi S., Caniani D., Grieco E., Lioi D., Mancini I. (2014). Assessment of the possible reuse of MSW coming from landfill mining of old open dumpsites. Waste Management 34: 702-710.
  3. Jani Y., Kaczala F., Marchand C., Hogland M., Kriipsalu M., Hogland W., Kihl A. (2016). Characterization of mined fine fraction and waste composition from a Swedish landfill. Waste Management& Research 34(12):1292-1299.
  4. Aulin C., Neretnieks I. (1995). A material balance for an industrial landfill. Proceedings of the Sardinia '95, 5th International Landfill Symposium (3):173-180.
  5. Mönkäre T., Palmroth M., Rintala J. (2017). Screening biological methods for laboratory scale stabilization of fine fraction from landfill mining. Waste Management 60:739-747.
  6. Hogland W. (2002). Remediation of an old landfill site: soil analysis, leachate quality and gas production. Environ. Sci. Pollut. Res. Int., 49-54.
  7. Hull R., Krogmann U., Asce M., et al. (2005).Composition and characteristics of excavated materials from New Jersey landfill. Journal of Environmental Engineering 3: 478–490.
  8. Mönkäre T., Palmroth M., Rintala J. (2016). Characterization of fine fraction mined from two Finish landfills. Waste Management 47:34-39.
  9. Hermann R., Wolfsberger T., Pomberger R. Sarc R. (2016). Landfill mining: developing a comprehensive assessment method. Waste Management &Research 34:1157-1163.
  10. Treybal R. (1981). Mass transfer operations.3rd ed., McGraw-Hill Book Company, Singapore.
  11. Bird R., Stewart W., Lightfoot E. (2007). Transport Phenomena. John-Wiley & Sons Inc., New York.
  12. Li S, Zhong X, Kan X, Gu L., Sun H., Zhan G., Liu X. (2016). De novo transcriptome analysis of Thitarodes jiachaensis before and after infection by the caterpillar fungus, Ophiocordyceps sinensis. Gene 580: 96–103.
  13. Tessier A., Campbell P., Bisson M. (1979). Sequential extraction procedure for the speciation of particulate trace elements. Analytical Chemistry 51:844-851.
  14. Flyhammar P. (1998). Use of sequential extraction on anaerobically degraded municipal solid waste. Science of the Total Environment 212:203-215.
  15. Long Y., Shen D., Wang H., Lu W., Zhao Y. (2011). Heavy metal source analysis in municipal solid waste (MSW): case study on Cu and Zn. Journal of Hazardous Materials 186:1082-1087.
  16. Xiaoli C., Shimaoka T., Xianyan C., Qiang G., Youcai Z. (2007).Characteristics and mobility of heavy metals in an MSW landfill: Implications in risk assessment and reclamation. Journal of Hazardous Materials 144: 485–491.
  17. Parodi A, Feuillade-Cathalifaud G, Pallier V, et al (2011).Optimization of municipal solid waste leaching test procedure: Assessment of the part of hydrosoluble organic compounds. Journal of Hazardous Materials 186: 991–998.
  18. Jani Y., Kriipsalu M., Pehme K., Burlakovs J., Hogland M., Denafas G., Hogland W.(2017). Composition of waste at an early EU landfill of Torma in Estonia. IJEE 8(2):113-117.
  19. Ure A., Davidson C. (2002). Chemical speciation in the environment. 2nd ed., Blackwell Science Ltd, London.
  20. SEPA (Swedish Environmental Protection Agency) (2009). Riktvärden för förorenad mark-modellbeskrivning och vägledning. Naturvårdsverket Rapport 5976, Stockholm, Sweden (in Swedish).
  21. Quaghebeur M., Laenen B., Geysen D., et al. (2013).Characterization of landfilled materials: Screening of the enhanced landfill mining potential. Journal of Cleaner Production 55: 72–83.
  22. Gabarron M., Faz A., Martinez S., Zornoza R., Acosta J. (2017). Assessment of metals behavior in industrial soil using sequential extraction, multivariable analysis and geostatistical approach. Journal of Geochemical Exploration 172:174-183.
  23. Oygard J., Gjengedal E., Mobbs H. (2008). Trace elements exposure in the environment from MSW landfill leachate sediments measured by a sequential extraction technique. J. Hazard. Mater. 153:751-758.
  24. Pan Y., Wu Z., Zhou J., Zhao J., Ruan X., Liu J., Qian G. (2013). Chemical characteristics and risk assessment of typical municipal solid waste incineration fly ash in China. Journal of Hazardous Materials 261:269-27