Faculty of Engineering and Science, Curtin University Sarawak Campus, CDT 250, 98009 Miri, Sarawak, Malaysia


Composting is a biochemical process in a controlled aerobic environment where thermophilic microorganisms stabilize organic waste substrates into valuable humus-like products. Three parameters which are known to affect the composting process including temperature, aeration rate and composting time. This research aims at developing a model to describe the relative influence of different temperatures, aeration rates and reaction time on the composting process and how it affects the final quality of EFB compost produced. EFB samples were mixed with urea as a source of nitrogen and fresh compost as inoculum. The composting process was carried out in a composting test bench for a total of 42 days. The moisture content was found to be significantly affected by temperature and reaction time. Carbon loss was significantly affected by all three factors. Nitrogen content was affected by aeration rate, reaction time as well as interaction between temperature and reaction time. Changes in total ions over time showed a positive correlation with the value of conductivity (Pearson correlation coefficient of 0.853) and the largest reduction in C/N ratio (from 30.2:1 to 17.6:1) was obtained at temperature of 40°C and aeration rate of 0.4 L/min kg. The results of this study could form a basis for palm oil mills to improve the quality of EFB composts produced within a short maturation period and with low C/N ratio.


1.     Chiew,   Y.L.   and   S.   Shimada,   2013.   Current   state   and environmental impact assessment for utilizing oil palm empty fruit bunches for fuel,  fiber and  fertilizer  –  A case study of Malaysia. Biomass and Bioenergy, 51: 109-124.
2.     Baharuddin, A.S., M. Wakisaka, Y. Shirai, S. Abd-Aziz, N.A. Abdul Rahman, and M.A. Hassan,2009. Co-Composting of Empty Fruit Bunches and Partially Treated Palm Oil Mill Effluents  in  Pilot  Scale.  International  Journal  of  Agricultural Research, 4: 69-78.
3.     Reijnders,  L.  and  M.A.J.  Huijbregts,  2008.Palm  oil  and  the emission of carbon-based greenhouse gases. Journal of Cleaner Production, 16: 477-482.
4.     Wicke, B., V. Dornburg, M. Junginger, A. Faaij,2008. Different palm oil production systems for energy purposes and their greenhouse gas implications. Biomass and Bioenergy, 32: 1322-1337.
5.     Mohammad,  N.,  M.  Zahangir-Alam,  N.A.  Kabbashi,  and  A. Ahsan, 2012. Effective composting of oil palm industrial waste by filamentous fungi: A review. Resources, Conservation and Recycling, 58:  69-78.
6.     Loh, S.K., S. James, M. Ngatiman, K.Y. Cheong, Y.M. Choo, and W.S. Lim,2013. Enhancement of palm oil refinery waste – Spent bleaching earth (SBE) into bio organic fertilizer and their effects on crop biomass growth. Industrial Crops and Products, 49: 775-781.
7.     Lahijani, P. and Z.A. Zainal,2011. Gasification of palm empty fruit bunch in a bubbling fluidized bed: A performance and agglomeration study. Bioresource Technology, 102: 2068-2076.
8.     Suhaimi,  M.  and  H.K.  Ong,  2011.  Composting  empty  fruit bunches of oil palm. Food and Fertilizer Technology Center for Asian and Pacific Region, 1-8.
9.     Stichnothe, H. and F. Schuchardt, 2010. Comparison of different treatment options for palm oil production waste on a life cycle basis. The International Journal of Life Cycle Assessment, 15:907-915.
10.   Schuchardt,  F.,  D.  Darnoko,  and  P.  Guritno,  Composting  of Empty Oil Palm Fruit Bunch (EFB) with   Simultaneous Evaporation   of   Oil   Mill   Waste   Water   (POME)   in   2002 International Oil Palm Conference2002, Indonesian Oil Palm Research Institute (IOPRI) Medan, Indonesia: Nusa Dua, Bali, Indonesia.
11.   Yahya, A., C.P. Sye, T.A. Ishola, and H. Suryanto,2010. Effect of adding palm oil mill decanter cake slurry with regular turning operation on the composting process and quality of compost from oil  palm  empty  fruit  bunches.  Bioresource  Technology,  101: 8736-8741.
12.   Kabashi, N., Z. Alam, and M. Ainuddin, Bio-Composting Process Development by SSF for Utilization Agro-Industrial Wastes, in 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006,  F.  Ibrahim, et  al.,  Editors. 2007,  Springer Berlin Heidelberg. 464-468.
13.   Mohammad, N., M.Z. Alam, and N. Kabashi, 2013.Development of composting process of oil palm industrial wastes by multi- enzymatic fungal system. Journal of Material Cycles and Waste Management, 15: 348-356.
14.   Shi, W., J.M. Norton, B.E. Miller, and M.G. Pace, 1999.  Effects of  aeration  and  moisture  during  windrow composting  on  the nitrogen fertilizer values of dairy waste composts. Applied Soil Ecology, 11: 17-28.
15.   Molla, A.H., A. Fakhrul-Razi, S. Abdul-Aziz, M.M. Hanifi, P.K. Roydchoudhury, M.Z. Alam, 2002. A potential resource for bioconversion of domestic wastewater sludge. Bioresource Technology, 85: 263-272.
16.   Thambirajah,  J.J.,  M.D.  Zulkali,  and  M.A.  Hashim,  1995. Microbiological and biochemical changes during the composting of oil palm empty-fruit-bunches. Effect of nitrogen supplementation on the substrate. Bioresource Technology, 52: 133-144.
17.   Singh,   R.P.,   M.   Hakimi-Ibrahim,   E.   Norizan,   and   M.S. Liyana,2010. Composting of waste from palm oil mill: a sustainable     waste     management     practice.     Reviews     in Environmental Science and Bio/Technology, 9:  331-344.
18.   Jiang, T., F. Schuchardt, G. Li, R. Guo, and Y. Zhao,2011. Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse  gas  emission  during  the  composting.  Journal of Environmental Sciences, 23: 1754-1760.
19.   Meyer-Kohlstock,  D.,  G.  Hadrich,  W.  Bidlingmaier,  and  E.
Kraft,2013. The value of composting in Germany – Economy, ecology, and legislation. Waste Management, 33: 536-539.
20.   Forster, J., W. Zech, and E. Würdinger, 1993. Comparison of chemical and microbiological methods for the characterization of the maturity of composts from contrasting sources. Biology and Fertility of Soils, 16: 93-99.
21.   Inbar,  Y.,  Y.  Hadar,  and  Y.  Chen,  1993.Recycling  of  Cattle Manure: The Composting Process and Characterization of Maturity, Journal of  Environmental Quality, 22: 857-863.
22.   Van  Heerden,  I.,  C.  Cronjé,  S.H.  Swart,  J.M.  Kotzé,  2002.
Microbial, chemical and physical aspects of citrus waste composting. Bioresource Technology, 81: 71-76.
23.   Singh, R.P., A. Embrandiri, M.H. Ibrahim, and N. Esa, 2011.
Management of biomass residues generated from palm oil mill: Vermicomposting a sustainable option. Resources, Conservation and Recycling, 55: 423-434.
24.   Tuomela, M., M. Vikman, A. Hatakka, and M. Itavaara, 2000.
Biodegradation of lignin in a compost environment: a review. Bioresource Technology, 72: 169-183.
25.   Nutongkaew,   T.,   W.   Duangsuwan,   S.   Prasertsan,   and   P.
Prasertsan, 2013. Physicochemical and biochemical changes during composting of different mixing ratios of biogas sludge with palm oil mill wastes and biogas effluent. Journal of Material Cycles and Waste Management, 1-10.
26.   Hong, J.H. and K.J. Park, 2005.Compost biofiltration of ammonia gas from bin composting. Bioresource Technology, 96: 741-745.
27.   Pagans, E., R. Barenna, X. Font, A. Sánchez.2006. Ammonia emissions  from  the  composting  of  different  organic  wastes. Dependency on process temperature. Chemosphere, 62: 1534-1542.
28.   Kulcu, R. and O. Yaldiz, 2004.Determination of aeration rate and kinetics  of  composting  some agricultural  wastes.  Bioresource Technology, 93: 49-57.
29.   Leton, T.G. and E.I. Stentiford, 1990. Control of aeration in static pile composting. Waste Management & Research, 8: 299-306.
30.   Rasapoor, M., T. Nasrabadi, M. Kamali, H. Hoveidi, 2009. The effects of aeration rate on generated compost quality, using aerated static pile method. Waste Management, 29: 570-573.
31.   Partanen, P., J. Hultman, L. Paulin, P. Auvinen, M. Romantschuk, 2010. Bacterial diversity at different stages of the composting process. BMC Microbiology, 10: 94.
32.   Wong, J.W.C., K.F. Mak, N.W. Chan, A. Lam, M. Fang, L.X. Zhou, Q.T. Wu, and X.D. Liao, 2001. Co-composting of soybean residues and leaves in Hong Kong. Bioresource Technology, 76: 99-106.
33.   Xu, J.M., C. Tang, and Z.L. Chen, 2006.The role of plant residues in pH change of acid soils differing in initial pH. Soil Biology and Biochemistry, 38: 709-719.
34.   Huang, G.F., J.W.C. Wong, Q.T. Wu, and and B.B. Nagar, 2004. Effect of C/N on composting of pig manure with sawdust. Waste Management, 24: 805-813.
35.   Lin, C.,2008.A negative-pressure aeration system for composting food wastes. Bioresource Technology, 99: 7651-7656.
36.   Gao, M., F. Liang, A. Yu, B. Li, L. Yang, 2010.  Evaluation of stability and maturity during forced-aeration composting of chicken manure and sawdust at different C/N ratios. Chemosphere, 78: 614-619.
37.   Tweib,  S., R. Rahman, and M.  Khalil,2014. Physicochemical Changes in Co-Composting Process of Palm Oil Mill Sludge (POMS) and Solid Waste (Kitchen Waste) Using Bin Composter. Arabian Journal for Science and Engineering, 39: 2455-2462.