Authors

Faculty of Chemical Engineering, Universiti Teknologi MARA Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia

Abstract

The increasing number of environmental pollution through carbon emission from combustion of fuels and the unstable fluctuation of global petroleum prices have alarmed a signal that a clean alternative energy is in urgent need. Through the past years, a lot of researches have been focusing in producing  biodiesel  which  can  be  made  from  natural  elements  such  as  plants  and  recyclable materials, hence defined its renewable properties as biodegradable, sustainable and non-toxic fuel. The focuses have been varied from the variable of feedstock used, development of catalysts and different kind of methodologies for the production of biodiesel. In this study, the feasibility of biodiesel to be synthesized from a low cost feedstock which is coconut waste has been investigated. The abundance of coconut waste readily obtained from the market, restaurants and hotels were converted to a value-added fuel through an in-situ transesterification. It is found that at ratio of 12.5:1 of methanol to solid coconut waste, with reaction time of 6 hours and 5wt% of catalyst could obtain up to 90% of biodiesel content. This investigation concludes that coconut waste has the potential to be further used for synthesis of biodiesel through in-situ transesterification reaction.

Keywords

1.   Atabani, A.E., A.S. Silitonga, H.C. Ong, T.M.T.  Mahlia, H.H. Masjuki, I.A. Badruddin and H. Fayaz, 2013. Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renewable and Sustainable Energy Reviews, 18: 211-245.
2.   Yusuf, N.N., S.K. Kamarudin and Z. Yaakub, 2011. Overview on the current trends in biodiesel production. Energy Conversion and Management, 52: 2741-2751.
3.   Karmakar, A., S. Karmakar and S. Mukherjee, 2010. Properties of various plants and animals feedstock for biodiesel production. Bioresource Technology, 101: 7201-7210
4.   Vicente,  G.,  M.  Martinez  and  J.  Aracil,  2004.  Integrated biodiesel production: a comparison of different homogneous catalyst system. Bioresource Technology, 92: 297-305.
5.   Lotero, E., Y. Liu, D.E. Lopez, K. Suwannakarn, D.A Bruce and J.G. Goodwin, 2005. Synthesis of biodiesel via acid catalysis. Industrial and  Engineering Chemistry Research, 44: 5353-5363
6.   Akbar, E., Z. Yaakob, S.K. Kamarudin, M. Ismail and J. Salimon, 2009.  Characteristic  and  composition  of  Jatropha  Curcas  oil seed from Malaysia and its potential as biodiesel feedstock. European Journal of Scientific Research, 29(3): 396-403.
7.   Salimon, J., and R. Abdullah, 2008. Physiochemical properties of Malaysian Jatropha curcas seed oil. Sains Malaysiana, 37(4): 379-382.
8.   Shuit,  S.H.,  K.  T.  Lee,  H.  K.  Azlina  and  Y.  Suzana,  2010. Reactive extraction and in-situ esterification of Jatropha curcas L.   seeds for the production of biodiesel. Fuel, 89: 527-530.
9.   Makkar,  H.P.S.,  and  K.  Becker,  2009.  Jatropha  curcas,  a promising crop for generation of biodiesel and value-added coproducts. European Journal of Scientific Research, 111: 773-787.
10.   Sulaiman,  S.,  A.R.  Abdul Aziz and  M.   Kheireddine Aroua, 2013. Optimization and modeling of extraction of solid coconut waste oil. Journal of Food Engineering, 114: 228-234.
11. Amin, S.K., S. Hawash, G. El Diwani and S.   El Rafei, 2010. Kinetics and  thermodynamics of oil extraction  from Jatropha curcas in aqueous acidic hexane solutions. Journal of American Science, 6: 293-483.
12. Sriti, J., T. Talou, M.  Faye, G. Vilarem and B. Marzouk, 2011. Oil extraction from coriander fruits by extrusion and comparison with solvent extraction processes. Industrial Crops and Products, 33: 659-664.
13. Demirbas, A., 2002. Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Conversion and Management, 43: 2349-2356.
14. Kusdiana, D., and S. Saka, 2001. Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel, 80: 693-698.
 
15. Jain, S., and M.P. Sharma, 2010. Stability of biodiesel and its blends: A review. Renewable and Sustainable Energy Reviews,14: 667-678.
1.             Atabani, A.E., A.S. Silitonga, H.C. Ong, T.M.T.  Mahlia, H.H. Masjuki, I.A. Badruddin and H. Fayaz, 2013. Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renewable and Sustainable Energy Reviews, 18: 211-245.
2.             Yusuf, N.N., S.K. Kamarudin and Z. Yaakub, 2011. Overview on the current trends in biodiesel production. Energy Conversion and Management, 52: 2741-2751.
3.             Karmakar, A., S. Karmakar and S. Mukherjee, 2010. Properties of various plants and animals feedstock for biodiesel production. Bioresource Technology, 101: 7201-7210
4.             Vicente,  G.,  M.  Martinez  and  J.  Aracil,  2004.  Integrated biodiesel production: a comparison of different homogneous catalyst system. Bioresource Technology, 92: 297-305.
5.             Lotero, E., Y. Liu, D.E. Lopez, K. Suwannakarn, D.A Bruce and J.G. Goodwin, 2005. Synthesis of biodiesel via acid catalysis. Industrial and  Engineering Chemistry Research, 44: 5353-5363
6.             Akbar, E., Z. Yaakob, S.K. Kamarudin, M. Ismail and J. Salimon, 2009.  Characteristic  and  composition  of  Jatropha  Curcas  oil seed from Malaysia and its potential as biodiesel feedstock. European Journal of Scientific Research, 29(3): 396-403.
7.             Salimon, J., and R. Abdullah, 2008. Physiochemical properties of Malaysian Jatropha curcas seed oil. Sains Malaysiana, 37(4): 379-382..
8.             Shuit,  S.H.,  K.  T.  Lee,  H.  K.  Azlina  and  Y.  Suzana,  2010. Reactive extraction and in-situ esterification of Jatropha curcas L.   seeds for the production of biodiesel. Fuel, 89: 527-530.
9.             Makkar,  H.P.S.,  and  K.  Becker,  2009.  Jatropha  curcas,  a promising crop for generation of biodiesel and value-added coproducts. European Journal of Scientific Research, 111: 773-787.
10.   Sulaiman,  S.,  A.R.  Abdul Aziz and  M.   Kheireddine Aroua, 2013. Optimization and modeling of extraction of solid coconut waste oil. Journal of Food Engineering, 114: 228-234.
11.           Amin, S.K., S. Hawash, G. El Diwani and S.   El Rafei, 2010. Kinetics and  thermodynamics of oil extraction  from Jatropha curcas in aqueous acidic hexane solutions. Journal of American Science, 6: 293-483.
12.           Sriti, J., T. Talou, M.  Faye, G. Vilarem and B. Marzouk, 2011. Oil extraction from coriander fruits by extrusion and comparison.