1 School of Engineering and Resources, Walailak University, Nakhon Si Thammarat, Thailand

2 Department of Biology, Faculty of Science, Thaksin University, Patthalung, Thailand

3 School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia


This study aimed  to  evaluate  the  Biochemical Methane Potential (BMP) of different types of wastewaters and sizes of granules. The granules (CS: from a cassava, SS: a seafood, and PS: a palm oil factory) and wastewaters initial Chemical Oxygen Demand (COD) were 18,800, 4,200 and 100,000 mg/l  respectively).  Modified  Gompertz  equation  was  used  to compare the data from the experiments. Wastewater from a cassava factory gave the highest BMP when used with only granules from its own source (CS). Wastewater from seafood factory had the highest nitrogen content thus, represented the most imbalance nutrient source. In this case, mix- granules (SS+CS) gave highest BMP. Palm oil mill effluent did not match COD: N ratio criterion and had too high COD level which caused substrate inhibition. Here the mix-granules (PS+CS) gave highest  BMP.  In  general,  the  larger  granule  size  and  the  nutrient  balance  could  improve  the efficiency and hence increase the biogas production rate. The initial COD or different substrate has a strong effect on BMP and the maximum specific methane rates whereas the different sizes of granule have an effect on the length of lag phase period. In most cases, it was sufficient to represent the experimental data with traditional modified Gompertz equation and Monod models.


1.   Ghatak  M.D.  and  P.  Mahanta,  2014.  Comparison  of  kinetic Models for Biogas Production Rate from Saw Dust. International Journal of Research in Engineering and Technology, 3: 248-254.
2.   Budiyono,  I.Syaichurrozi,  and  S.Sumardiono,  2013.  Biogas Production   Kinetic   from   Vinasse   Waste   in   Batch   Mode Anaerobic  Digestion.  World  Applied  Sciences  Journal,  26:1464-1472.
3.   Sidik   U.H.,   F.B.Razali,   S.R.W.Alwi,   andF.Maigari,   2013. Biogas production through Co-digestion of palm oil mill effluent with  cow  manure.  Nigerian  Journal  of  Basic  and  Applied Science, 21: 79-84.
4.   Paepatung  N,  A.Nopharatana,  and  W.Songkasiri,  2009.  Bio- Methane Potential of Biological Solid Materials and Agricultural Wastes. Asian Journal on Energy and Environment, 10: 19-27.
5.   Kaosol  T  and  N.Sohgrathok,  2012.  Enhancement  of  Biogas Production Potential for Anaerobic Co-Digestion of Wastewater Using Decanter Cake. American Journal of Agricultural and Biological Sciences, 7: 494-502.
6.   Rincón B, C.J.Banks, and S.Heaven, 2010. Biochemical methane potential of winter wheat (Triticum aestivum L.): Influence of growth stage and storage practice. Bioresource Technology, 101: 8179-8184.
7.   Cavaleiro  A.J.,  T.  Ferreira,  F.  Pereira,  G.  Tommaso,    M.M. Alves, 2013.  Biochemical methane potential of raw and pre- treated meat-processing wastes. Bioresource Technology, 129: 519-525.
8.   Cho J.K., S.C.Park, and H.N.Chang, 1995. Biochemical methane potential and solid state anaerobic digestion of Korean food wastes.   Bioresource Technology, 52: 245-253.
9.   Elsayed  E,    N.  George,  and  H.  Hisham,  2012.  Biochemical methane potential (BMP) of food  waste and  primary sludge: Influence of inoculum pre-incubation and inoculum source. Bioresource Technology, 110: 18-25.
10. Patil J.H., M.   Lourdu, A. Raj, S. Vinaykumar, H. Manjunath, and A. Srinidhi., 2011. Biomethanation of Water Hyacinth, Poultry Litter, Cow Manure and Primary Sludge: A Comparative Analysis. Research Journal of Chemical Sciences, 1: 22-26.
11. Rincón B,  L.  Bujalance, F.G.    Fermoso,  A.  Martín, and   R. Borja, 2013. Biochemical methane potential of two-phase olive mill  solid  waste:  Influence  of  thermal  pretreatment  on  the process kinetics. Bioresource Technology, 140: 249-255.
12.  Angelidaki I, M. Alves, and D. Bolzonella, L. Borzacconi, J.L Campos,  2009.  Defining  the  biomethane  potential  (BMP)  of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Science and Technology, 59: 927-934.
13. Owen  WF,  D.C  Stuckey,    Jr.J.B.  Healy,  L.Y.  Young,  and McCarty PL., 1979. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Research, 13: 485-492.
14. Abdel-Hadi  M., 2008.  A simple apparatus for biogas quality determination. Misr J Ag Eng, 25: 1055-1066.
15. APHA A, WEF. 1999. Standard Method for the Examination of Water  and  Wastewater.  20ed.  Washington,  D.C.:  American Public Health Association.
16. Ghatak  M.D.  and  P.  Mahanta,  2014.  Kinetic  Assessment  of Biogas  Production  from  Lignocellulosic  Biomasses. International Journal of Engineering and Advanced Technology, 3: 244-249.
17. Budiyono, I. Syaichurrozi, and S. Sumardiono, 2014. Effect of Total Solid Content to Biogas Production Rate from Vinasse. International Journal of Engineering, 27: 177-184.
18. Dechrugsa S, D. Kantachote, and  S. Chaiprapat, 2013. Effects of inoculum to substrate ratio, substrate mix ratio and inoculum source on batch co-digestion of grass and pig manure. Bioresource Technology, 146: 101-108.
19. Lo  H.M.,  T.A.  Kurniawan,M.E.T.  Sillanpää,    T.Y.  Pai,  C.F. Chiang, and K.P. Chao, 2010. Modeling biogas production from organic fraction of MSW co-digested with MSWI ashes in anaerobic bioreactors. Bioresource Technology, 101: 6329-6335.
20. Patil JH, M.A.. Raj, P.L. Muralidhara, S.M. Desai, and G.K.M. Raju, 2012. Kinetics of Anaerobic Digestion of Water Hyacinth Using Poultry Litter as Inoculum. International Journal of Environmental Science and Development, 3: 94-98.
21. Yusuf  M.O.L.,  A.  Debora,  and  D.E.  Ogheneruona,  2011. Ambient temperature kinetic assessment of biogas production from co-digestion of horse and cow dung. Res Agr Eng, 57: 97-104.
22. Sumardiono   S,   I.   Syaichurrozi,   S.   Budiyono,   and   S.B. Sasongko., 2013. The Effect of COD/N Ratios and pH Control to Biogas Production from Vinasse. International Journal of Biochemistry Research & Review, 3: 401-413