A Review on Renewable Energy Scenario in Ethiopia

Document Type : Review paper


1 Department of Environment and Sustainability Sciences, Faculty of Natural Resources and Environment, University for Development Studies, P.O. Box TL 1350 Tamale, Ghana

2 Department of Geological Engineering, Faculty of Geosciences and Environmental Studies, University of Mines and Technology, P.O Box 237, Tarkwa, Ghana

3 School of Environment and Life Sciences, C. K. Tedam University of Technology and Applied Sciences. Navrongo, Ghana


Although Ethiopia is one of the world's fastest-growing economies, access to sustainable energy and cutting-edge clean energy technology remains a major concern. The government is making significant efforts to generate renewable energy and provide more access to its citizens. Despite this, traditional fuels (charcoal, fuel wood, dung cakes, and agricultural waste) account for around 87 percent of Ethiopia's energy use, and they pose a range of health and environmental risks. Solar, hydro, wind, and geothermal resources abound in the nation, but only 5% of the country's total hydroelectric capacity is being used; while, the rest is either underutilized or underdeveloped. An in-depth look at Ethiopia's renewable energy potential, as well as the opportunities and problems it faces, is presented in this review. With a combined installed capacity of over 7000 MW, hydropower and wind power are the most promising renewable energy sources in Ethiopia as of yet. It is hoped that this assessment will shed light on how Ethiopia can harness and maximize the use of its abundant renewable energy sources.


Main Subjects

  1. Allesina, G., Pedrazzi, S., Sgarbi, F., Pompeo, E., Roberti, C., Cristiano, V. and Tartarini, P., 2015. Approaching sustainable development through energy management, the case of Fongo Tongo, Cameroon, International Journal of Energy and Environmental Engineering, 6, pp. 121-127. Doi:10.1007/s40095-014-0156-7
  2. Gyamfi, B. A., Bein, M. A. and Bekun, F. V., 2020. Investigating the nexus between hydroelectricity energy, renewable energy, nonrenewable energy consumption on output: evidence from E7 countries, Environmental Science and Pollution Research, 27, pp. 25327-25339. Doi:10.1007/s11356-020-08909-8
  3. Badmus, I., Osunleke, A. S., Fagbenle, R. O. and Oyewola, M. O., 2012. Energy and exergy analyses of the Nigerian transportation sector from 1980 to 2010, International Journal of Energy and Environmental Engineering, 3, pp. 1-7. Doi:10.1186/2251-6832-3-23
  4. Enteria, N., Awbi, H. and Yoshino, H., 2015. Application of renewable energy sources and new building technologies for the Philippine single family detached house, International Journal of Energy and Environmental Engineering, 6, pp. 267-294. Doi:10.1007/s40095-015-0174-0
  5. Kuzemko, C., Bradshaw, M., Bridge, G., Goldthau, A., Jewell, J., Overland, I., Scholten, D., Van de Graaf, T. and Westphal, K., 2020. Covid-19 and the politics of sustainable energy transitions, Energy Research & Social Science, 68, pp. 101685. Doi:10.1016/j.erss.2020.101685
  6. Abam, F. I., Nwankwojike, B. N., Ohunakin, O. S. and Ojomu, S. A., 2014. Energy resource structure and on-going sustainable development policy in Nigeria: a review, International Journal of Energy and Environmental Engineering, 5, pp. 1-16. Doi:10.1007/s40095-014-0102-8
  7. Chen, M., Sinha, A., Hu, K. and Shah, M. I., 2021. Impact of technological innovation on energy efficiency in industry 4.0 era: Moderation of shadow economy in sustainable development, Technological Forecasting and Social Change, 164, pp. 120521. Doi:10.1016/j.techfore.2020.120521
  8. Kober, T., Schiffer, H.-W., Densing, M. and Panos, E., 2020. Global energy perspectives to 2060–WEC's World Energy Scenarios 2019, Energy Strategy Reviews, 31, pp. 100523. Doi:10.1016/j.esr.2020.100523
  9. Dagnachew, A. G., Hof, A. F., Lucas, P. L. and van Vuuren, D. P., 2020. Scenario analysis for promoting clean cooking in Sub-Saharan Africa: Costs and benefits, Energy, 192, pp. 116641. Doi:10.1016/j.energy.2019.116641
  10. Tiruye, G. A., Besha, A. T., Mekonnen, Y. S., Benti, N. E., Gebreslase, G. A. and Tufa, R. A., 2021. Opportunities and challenges of renewable energy production in Ethiopia, Sustainability, 13(18), pp. 10381. Doi:10.3390/su131810381
  11. Hailu, A. D., 2022. Ethiopia hydropower development and Nile basin hydro politics, AIMS Energy, 10(1), pp. 87-101. Doi:10.3934/energy.2022006
  12. Njoh, A. J., 2021. A systematic review of environmental determinants of renewable energy performance in Ethiopia: A PESTECH analysis, Renewable and Sustainable Energy Reviews, 147, pp. 111243. Doi:10.1016/j.rser.2021.111243
  13. Admassie, A. and Abebaw, D., 2021. Ethiopia-Land, Climate, Energy, Agriculture and Development: A Study in the Sudano-Sahel Initiative for Regional Development, Jobs, and Food Security, ZEF Working Paper Series, University of Bonn, Center for Development Research (ZEF), Bonn, 198. Doi:10.48565/bonndoc-14
  14. Beza, T. M., Wu, C.-H. and Kuo, C.-C., 2021. Optimal sizing and techno-economic analysis of minigrid hybrid renewable energy system for tourist destination islands of Lake Tana, Ethiopia, Applied Sciences, 11(15), pp. 7085. Doi:10.3390/app11157085
  15. Kalonda, P. O. and Omekanda, A. M., 2020.Kruskal's Algorithm, Vogel's Approximation and Modified Distribution Methods for the Design of Optimal Electrical Networks in the Democratic Republic of Congo, 2020 IEEE PES/IAS PowerAfrica: IEEE, pp. 1-5, Doi:10.1109/PowerAfrica49420.2020.9219801
  16. Khan, B. and Singh, P., 2017.The current and future states of Ethiopia’s energy sector and potential for green energy: A comprehensive study, International Journal of Engineering Research in Africa: Trans Tech Publ, pp. 115-139, Doi:10.4028/www.scientific.net/JERA.33.115
  17. Bamwesigye, D., Kupec, P., Chekuimo, G., Pavlis, J., Asamoah, O., Darkwah, S. A. and Hlaváčková, P., 2020. Charcoal and wood biomass utilization in Uganda: the socioeconomic and environmental dynamics and implications, Sustainability, 12(20), pp. 8337. Doi:10.3390/su12208337
  18. Bekele, G. and Palm, B., 2010. Feasibility study for a standalone solar–wind-based hybrid energy system for application in Ethiopia, Applied Energy, 87(2), pp. 487-495. Doi:10.1016/j.apenergy.2009.06.006
  19. Misganaw, A. and Teffera, B., 2022. An assessment of the waste-to-energy potential of municipal solid wastes in Ethiopia, Bioresource Technology Reports, 19, pp. 101180. Doi:10.1016/j.biteb.2022.101180
  20. Ravindra, K., Kaur-Sidhu, M., Mor, S. and John, S., 2019. Trend in household energy consumption pattern in India: A case study on the influence of socio-cultural factors for the choice of clean fuel use, Journal of Cleaner Production, 213, pp. 1024-1034. Doi:10.1016/j.jclepro.2018.12.092
  21. Benti, N. E., Gurmesa, G. S., Argaw, T., Aneseyee, A. B., Gunta, S., Kassahun, G. B., Aga, G. S. and Asfaw, A. A., 2021. The current status, challenges and prospects of using biomass energy in Ethiopia, Biotechnology for Biofuels, 14(1), pp. 1-24. Doi:10.1186/s13068-021-02060-3
  22. Beyene, G. E., Kumie, A., Edwards, R. and Troncoso, K., 2018. Opportunities for transition to clean household energy in Ethiopia: application of the household energy assessment rapid tool (HEART). Geneva: World Health Organization, p. 65 p. 9789241514491:9789241514491.
  23. Burnside, N., Montcoudiol, N., Becker, K. and Lewi, E., 2021. Geothermal energy resources in Ethiopia: Status review and insights from hydrochemistry of surface and groundwaters, Wiley Interdisciplinary Reviews: Water, 8(6), pp. e1554. Doi:10.1002/wat2.1554
  24. Sime, G., Tilahun, G. and Kebede, M., 2020. Assessment of biomass energy use pattern and biogas technology domestication programme in Ethiopia, African Journal of Science, Technology, Innovation and Development, 12(6), pp. 747-757. Doi:10.1080/20421338.2020.1732595
  25. Benka-Coker, M. L., Tadele, W., Milano, A., Getaneh, D. and Stokes, H., 2018. A case study of the ethanol CleanCook stove intervention and potential scale-up in Ethiopia, Energy for Sustainable Development, 46, pp. 53-64. Doi:10.1016/j.esd.2018.06.009
  26. Zegeye, A. D., 2021. Wind resource assessment and wind farm modeling in Mossobo-Harena area, North Ethiopia, Wind Engineering, 45(3), pp. 648-666. Doi:10.1177/0309524X20925409
  27. Gebreslassie, M. G., Cuvilas, C., Zalengera, C., To, L. S., Baptista, I., Robin, E., Bekele, G., Howe, L., Shenga, C. and Macucule, D. A., 2022. Delivering an off-grid transition to sustainable energy in Ethiopia and Mozambique, Energy, Sustainability and Society, 12(1), pp. 1-18. Doi:10.1186/s13705-022-00348-2
  28. Kitessa, B. D., Ayalew, S. M., Gebrie, G. S. and Teferi, S. T. m., 2021. Assessing the supply for a basic urban service demand-with a focus on water-energy management in Addis Ababa city, PloS one, 16(9), pp. e0249643. Doi:10.1371/journal.pone.0257073
  29. Hameer, S. and Ejigu, N., 2020. A prospective review of renewable energy developments in Ethiopia, AAS Open Research, 3, pp. 64. Doi:10.12688/aasopenres.13181.1
  30. Gezahegn, T. W., Gebregiorgis, G., Gebrehiwet, T. and Tesfamariam, K., 2018. Adoption of renewable energy technologies in rural Tigray, Ethiopia: An analysis of the impact of cooperatives, Energy Policy, 114, pp. 108-113. Doi:10.1016/J.ENPOL.2017.11.056
  31. Srinivasan, R., Bezabih, M., Adie, A., Dile, Y., Bizimana, J. and Lefore, N., 2020. Estimating water resource availability to produce livestock fodder in the rainfed agricultural land in Ethiopia using small scale irrigation, Feed the Future Innovation Lab for Livestock Systems in collaboration with the Feed The Future Innovation Lab For Small Scale Irrigation. Nairobi, Kenya: ILRI. Doi:10.13140/RG.2.2.22734.33603
  32. Berihie, G. K., 2022. Nuclear Science and Technology as a Part of Ethiopia’s Energy Mix and Sustainable Development Strategies: exploring opportunities and challenges, Ethiopian Journal of Science and Sustainable Development, 9(2), pp. 9-18. Doi:10.20372/ejssdastu:v9.i2.2022.471
  33. Bezabih, A. W., 2021. Investigation of Energy Distribution System for Sustainability and Low Carbon Development in the Case of Amhara Regional State, Ethiopia, Research square. Doi:10.21203/rs.3.rs-664127/v1
  34. Adedeji, P. A., Akinlabi, S., Madushele, N. and Olatunji, O., 2019.The future of renewable energy for electricity generation in sub-Saharan Africa, IOP Conference Series: Earth and Environmental Science: IOP Publishing, pp. 012039, Doi:10.1088/1755-1315/331/1/012039
  35. Qazi, A., Hussain, F., Rahim, N. A., Hardaker, G., Alghazzawi, D., Shaban, K. and Haruna, K., 2019. Towards sustainable energy: a systematic review of renewable energy sources, technologies, and public opinions, IEEE Access, 7, pp. 63837-63851. Doi:10.1109/ACCESS.2019.2906402
  36. Kishe, C. R., 2020. Optimization of hydropower generation potential of the dam; In the case of Arjo Dedessa dam, Western Ethiopia. Addis Ababa Science and Technology University. ISSN: 2141-6613. [In Press], Available at: https://academicjournals.org/journal/IJWREE/article-in-press-abstract/optimization_of_hydropower_generation_potential_of_dam_in_case_of_arjo_dedessa_dam_western_ethiopia
  37. Getie, E. M. and Jember, Y. B., 2022. Potential assessment and performance evaluation of a floating solar photovoltaic on the great Ethiopian renaissance dam, International Journal of Photoenergy, 2022. Doi:10.1155/2022/6964984
  38. Biru, A. and Yahya, A., 2022. Feasibility study of Haffa Mini-hydropower plant in Bambasi Woreda, Technium: Romanian Journal of Applied Sciences and Technology, 4(4), pp. 50–74. Doi:10.47577/technium.v4i4.6409
  39. Diriba, H. and Li, F., 2021. Energy Sector Status and Hydropower Development in the Eastern Nile Basin, Open Access Library Journal, 8(4), pp. 1-14. Doi:10.4236/oalib.1107338
  40. Kashparova, V. P., Chernysheva, D. V., Klushin, V. A., Andreeva, V. E., Kravchenko, O. A. and Smirnova, N. V., 2021. Furan monomers and polymers from renewable plant biomass, Russian Chemical Reviews, 90(6), pp. 750. Doi:10.1070/RCR5018
  41. Sherwood, J., 2020. The significance of biomass in a circular economy, Bioresource Technology, 300, pp. 122755. Doi:10.1016/j.biortech.2020.122755
  42. Hasan, A. S. M. M. and Ammenberg, J., 2019. Biogas potential from municipal and agricultural residual biomass for power generation in Hazaribagh, Bangladesh – A strategy to improve the energy system, Renewable Energy Focus, 29, pp. 14-23. Doi:10.1016/j.ref.2019.02.001
  43. Enyew, H. D., Mereta, S. T. and Hailu, A. B., 2021. Biomass fuel use and acute respiratory infection among children younger than 5 years in Ethiopia: a systematic review and meta-analysis, Public Health, 193, pp. 29-40. Doi:10.1016/j.puhe.2020.12.016
  44. Mosa, A., Grethe, H. and Siddig, K., 2020. Economy-wide effects of reducing the time spent for water fetching and firewood collection in Ethiopia, Environmental Systems Research, 9(1), pp. 1-18. Doi:10.1186/s40068-020-00189-y
  45. Nab, C. and Maslin, M., 2020. Life cycle assessment synthesis of the carbon footprint of Arabica coffee: Case study of Brazil and Vietnam conventional and sustainable coffee production and export to the United Kingdom, Geo: Geography and Environment, 7(2), pp. e00096. Doi:10.1002/geo2.96
  46. Yalew, A. W., 2022. Environmental and economic accounting for biomass energy in Ethiopia, Energy, Sustainability and Society, 12(1), pp. 1-12. Doi:10.1186/s13705-022-00356-2
  47. Yigezu, Z. D. and Jawo, T. O., 2021. Empirical analysis of fuelwood consumptions and its environmental implications in rural sub-city, Southern Ethiopia, International Journal of Sustainable Energy, 40(5), pp. 448-459. Doi:10.1080/14786451.2021.1888537
  48. Chisika, S. N., Park, J. and Yeom, C., 2021. Paradox of deadwood circular bioeconomy in Kenya’s public forests, Sustainability, 13(13), pp. 7051. Doi:10.3390/su13137051
  49. He, X. and Chen, Z., 2022. Weather, cropland expansion, and deforestation in Ethiopia, Journal of Environmental Economics and Management, 111, pp. 102586. Doi:10.1016/j.jeem.2021.102586
  50. Beshir, M., Yimer, F., Brüggemann, N. and Tadesse, M., 2022. Soil Properties of a Tef-Acacia decurrens-Charcoal Production Rotation System in Northwestern Ethiopia, Soil Systems, 6(2), pp. 44. Doi:10.3390/soilsystems6020044
  51. Andaregie, A., Worku, A. and Astatkie, T., 2020. Analysis of economic efficiency in charcoal production in Northwest Ethiopia: A Cobb-Douglas production frontier approach, Trees, Forests and People, 2, pp. 100020. Doi:10.1016/j.tfp.2020.100020
  52. Palaiologou, P., Kalabokidis, K., Ager, A. A. and Day, M. A., 2020. Development of comprehensive fuel management strategies for reducing wildfire risk in Greece, Forests, 11(8), pp. 789. Doi:10.3390/f11080789
  53. Matavel, C. E., Hafner, J. M., Hoffmann, H., Uckert, G., Massuque, J., Rybak, C. and Sieber, S., 2022. Toward energy saving and food safety in Central Mozambique: the role of improved cook stoves and heat retention boxes, Energy, Sustainability and Society, 12(1), pp. 26. Doi:10.1186/s13705-022-00353-3
  54. Tamire, M., Addissie, A., Skovbjerg, S., Andersson, R. and Lärstad, M., 2018. Socio-cultural reasons and community perceptions regarding indoor cooking using biomass fuel and traditional stoves in rural Ethiopia: a qualitative study, International Journal of Environmental Research and Public Health, 15(9), pp. 2035. Doi:10.3390/ijerph15092035
  55. Kefalew, T. and Lami, M., 2021. Biogas and bio-fertilizer production potential of abattoir waste: implication in sustainable waste management in Shashemene City, Ethiopia, Heliyon, 7(11), pp. e08293. Doi:10.1016/j.heliyon.2021.e08293
  56. Adem, M., 2019. Production of hide and skin in Ethiopia; marketing opportunities and constraints: a review paper, Cogent Food & Agriculture, 5(1), pp. 1565078. Doi:10.1080/23311932.2019.1565078
  57. Takal, U. S. and Abdul-Wahab, T., 2022. The Role of Local Level Institutional Arrangements in Climate Change Adaptation of Rural Dwellers in Northern Ghana, Research Square. Doi:10.21203/rs.3.rs-1919504/v1
  58. Bogale, G. A. and Erena, Z. B., 2022. Drought vulnerability and impacts of climate change on livestock production and productivity in different agro-Ecological zones of Ethiopia, Journal of Applied Animal Research, 50(1), pp. 471-489. Doi:10.1080/09712119.2021.2000357
  59. Gabisa, E. W. and Gheewala, S. H., 2019. Potential, environmental, and socio-economic assessment of biogas production in Ethiopia: The case of Amhara regional state, Biomass and Bioenergy, 122, pp. 446-456. Doi:10.1016/j.biombioe.2019.02.003
  60. Fereja, W. M. and Chemeda, D. D., 2022. Status, characterization, and quantification of municipal solid waste as a measure towards effective solid waste management: The case of Dilla Town, Southern Ethiopia, Journal of the Air & Waste Management Association, 72(2), pp. 187-201. Doi:10.1080/10962247.2021.1923585
  61. Bundhoo, Z. M. A., 2018. Solid waste management in least developed countries: current status and challenges faced, Journal of Material Cycles and Waste Management, 20(3), pp. 1867-1877. Doi:10.1007/s10163-018-0728-3
  62. Yasin, A. S., 2021. Assessing households’ willingness to pay for improved solid waste management services in Jigjiga, Ethiopia, Environment and Ecology Research, 9(2), pp. 39-44. Doi:10.13189/eer.2021.090201
  63. Manderso, T. M., 2018. Overview of existing wastewater management system in case of Debre Markos Town, Ethiopia, Engineering Mathematics, 2(2), pp. 107. Doi:10.11648/j.engmath.20180202.18
  64. Birara, E. and Kassahun, T., 2018. Assessment of solid waste management practices in Bahir Dar City, Ethiopia, Pollution, 4(2), pp. 251-261. Doi:10.22059/POLL.2017.240774.311
  65. Tassie, K., Endalew, B. and Mulugeta, A., 2019. Composition, generation and management method of municipal solid waste in Addis Ababa city, central Ethiopia: A review, Asian Journal of Environment & Ecology, 9(2), pp. 1-19. Doi:10.9734/ajee/2019/v9i230088
  66. Teshome, F. B., 2021. Municipal solid waste management in Ethiopia; the gaps and ways for improvement, Journal of Material Cycles and Waste Management, 23, pp. 18-31. Doi:10.1007/s10163-020-01118-y
  67. Tsegu, G., Birri, D. J., Tigu, F. and Tesfaye, A., 2022. Bioethanol production from biodegradable wastes using native yeast isolates from Ethiopian traditional alcoholic beverages, Biocatalysis and Agricultural Biotechnology, 43, pp. 102401. Doi:10.1016/j.bcab.2022.102401
  68. Megersa, S., 2020. Application of wood rot wild mushrooms in bioethanol production from sawdust of sawmills of Oromia Forest and Wildlife Enterprise, Ethiopia, World News of Natural Sciences, 29(3). Doi:10.5281/zenodo.3608533
  69. Li, S., Cui, Y., Zhou, Y., Luo, Z., Liu, J. and Zhao, M., 2017. The industrial applications of cassava: current status, opportunities and prospects, Journal of the Science of Food and Agriculture, 97(8), pp. 2282-2290. Doi:10.1002/jsfa.8287
  70. Geleta, C. D., 2019. Effect of first watering month on water requirement of sugarcane using CROPWAT Model in Finchaa Valley, Ethiopia, International Journal of Water Resources and Environmental Engineering, 11(1), pp. 14-23. Doi:10.5897/IJWREE2018.0821
  71. Barr, M. R., Volpe, R. and Kandiyoti, R., 2021. Liquid biofuels from food crops in transportation–A balance sheet of outcomes, Chemical Engineering Science: X, 10, pp. 100090. Doi:10.1016/j.cesx.2021.100090
  72. Zhang, S., Wang, J. and Jiang, H., 2021. Microbial production of value-added bioproducts and enzymes from molasses, a by-product of sugar industry, Food Chemistry, 346, pp. 128860. Doi:10.1016/j.foodchem.2020.128860
  73. Khoshkho, S. M., Mahdavian, M., Karimi, F., Karimi-Maleh, H. and Razaghi, P., 2022. Production of bioethanol from carrot pulp in the presence of Saccharomyces cerevisiae and beet molasses inoculum; a biomass based investigation, Chemosphere, 286, pp. 131688. Doi:10.1016/j.chemosphere.2021.131688
  74. Nyika, J. M., 2021. Green energy technologies as the road map to sustainable economic growth in Kenya, Eco-Friendly Energy Processes and Technologies for Achieving Sustainable Development: IGI Global, pp. 167-184. Doi:10.4018/978-1-7998-4915-5.ch009
  75. Gebreeyessus, G. D., Mekonnen, A., Chebude, Y. and Alemayehu, E., 2021. Quantitative characterization and environmental techno-legal issues on products and byproducts of sugar and ethanol industries in Ethiopia, Renewable and Sustainable Energy Reviews, 145, pp. 111168. Doi:10.1016/j.rser.2021.111168
  76. Contreras-Lisperguer, R., Batuecas, E., Mayo, C., Díaz, R., Pérez, F. and Springer, C., 2018. Sustainability assessment of electricity cogeneration from sugarcane bagasse in Jamaica, Journal of Cleaner Production, 200, pp. 390-401. Doi:10.1016/j.jclepro.2018.07.322
  77. Abdul-wahab, T. and Takase, M., 2019. Biodiesel Production from Neem (Azadirachtaindica) Seed Oil, International Journal of Innovative Research and Development, 8(8), pp. 33-40. Doi:10.24940/ijird/2019/v8/i8/AUG19031
  78. Mondal, M. A. H., Bryan, E., Ringler, C., Mekonnen, D. and Rosegrant, M., 2018. Ethiopian energy status and demand scenarios: Prospects to improve energy efficiency and mitigate GHG emissions, Energy, 149, pp. 161-172. Doi:10.1016/j.energy.2018.02.067
  79. Tesfamichael, B., Montastruc, L., Negny, S. and Yimam, A., 2021. Designing and planning of Ethiopia's biomass-to-biofuel supply chain through integrated strategic-tactical optimization model considering economic dimension, Computers & Chemical Engineering, 153, pp. 107425. Doi:10.1016/j.compchemeng.2021.107425
  80. Tesfahunegny, W., Datiko, D., Wale, M., Hailay, G. E. and Hunduma, T., 2020. Impact of wind energy development on birds and bats: the case of Adama wind farm, Central Ethiopia, The Journal of Basic and Applied Zoology, 81(1), pp. 1-9. Doi:10.1186/s41936-020-00168-4
  81. Mohammed, A., Lemu, H. G. and Sirahbizu, B., 2020.Statistical Analysis of Ethiopian Wind Power Potential at Selected Sites, Advances of Science and Technology, Cham: Springer International Publishing, pp. 370-381, Doi:10.1007/978-3-030-80618-7_25
  82. Hailu, A. D. and Kumsa, D. K., 2021. Ethiopia renewable energy potentials and current state, Aims Energy, 9(1), pp. 1-14. Doi:10.3934/energy.2021001
  83. Carvajal-Romo, G., Valderrama-Mendoza, M., Rodríguez-Urrego, D. and Rodríguez-Urrego, L., 2019. Assessment of solar and wind energy potential in La Guajira, Colombia: Current status, and future prospects, Sustainable Energy Technologies and Assessments, 36, pp. 100531. Doi:10.1016/j.seta.2019.100531
  84. Asres, G. A., 2021. Renewable Energy Potential, Energy Access, and Climate Change Mitigation in Ethiopia, in Luetz, J.M. & Ayal, D. Handbook of Climate Change Management: Research, Leadership, Transformation. Cham: Springer International Publishing, pp. 2603-2625. ISSN: 978-3-030-57281-5, Doi:10.1007/978-3-030-57281-5_310
  85. Mekuria, W., Yami, M., Haile, M., Gebrehiwot, K. and Birhane, E., 2019. Impact of exclosures on wood biomass production and fuelwood supply in northern Ethiopia, Journal of Forestry Research, 30(2), pp. 629-637. Doi:10.1007/s11676-018-0643-4
  86. Ohunakin, O. S., Oyewola, O. M. and Adaramola, M. S., 2013. Economic analysis of wind energy conversion systems using levelized cost of electricity and present value cost methods in Nigeria, International Journal of Energy and Environmental Engineering, 4(1), pp. 2. Doi:10.1186/2251-6832-4-2
  87. Shayan, M. E., Najafi, G., Ghobadian, B., Gorjian, S., Mamat, R. and Ghazali, M. F., 2022. Multi-microgrid optimization and energy management under boost voltage converter with Markov prediction chain and dynamic decision algorithm, Renewable Energy, 201, pp. 179-189. Doi:10.1016/j.renene.2022.11.006
  88. International Energy Agency (IEA), International Renewable Energy Agency (IRENA), United Nations Statistics Division (UNSD) World Bank, World Health Organization (WHO), W. H. O. W., 2021. Tracking SDG 7: The Energy Progress Report 2021. Available at: https://trackingsdg7.esmap.org/data/files/download-documents/2021_tracking_sdg7_report.pdf.
  89. Esmaeili Shayan, M., Najafi, G. and Lorenzini, G., 2022. Phase change material mixed with chloride salt graphite foam infiltration for latent heat storage applications at higher temperatures and pressures, International Journal of Energy and Environmental Engineering, 13(2), pp. 739-749. Doi:10.1007/s40095-021-00462-5
  90. Esameili Shayan, M., Najafi, G. and Esmaeili Shayan, S., 2023. Smart Micro-Grid Electrical Energy Management: Techno-Economic Assessment, Engineering and Energy Management, 13(1), pp. 90-101. Doi:10.22059/EEJ.2023.328407.1092
  91. Esmaeili Shayan, M., Hayati, M., Najafi, G. and Esmaeili Shayan, S., 2022. The Strategy of Energy Democracy and Sustainable Development: Policymakers and Instruments, Iranian (Iranica) Journal of Energy & Environment, 13(2), pp. 185-201. Doi:10.5829/ijee.2022.13.02.10
  92. Esmaeili Shayan, M., Najafi, G., Ghobadian, B., Gorjian, S., Mazlan, M., Samami, M. and Shabanzadeh, A., 2022. Flexible Photovoltaic System on Non-Conventional Surfaces: A Techno-Economic Analysis, Sustainability, 14(6), pp. 3566. Doi:10.3390/su14063566
  93. Shayan, M. E., Najafi, G., Ghobadian, B., Gorjian, S. and Mazlan, M., 2023. A novel approach of synchronization of the sustainable grid with an intelligent local hybrid renewable energy control, International Journal of Energy and Environmental Engineering, 14(1), pp. 35-46. Doi:10.1007/s40095-022-00503-7
  94. Hocking, C., 2009. The challenge of occupation: Describing the things people do, Journal of Occupational Science, 16(3), pp. 140-150. Doi:10.1080/14427591.2009.9686655