An Experimental Study to Apply an Absorption Refrigeration Cycle as a Dehumidifier in Humidification-Dehumidification Solar Desalination System

Document Type : Original Article


1 Sea-based Energy Research Group, Mechanical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran

2 Department of Mechanical Engineering, Science and Technology University, Tehran, Iran


In this paper, the performance of a hybrid humidification-dehumidification (HDH) desalination system is experimentally studied. The system operates as an Open-Air Closed-Water cycle and utilizes a solar air heater to heat the input air to the humidifier. An Ammonia absorption refrigeration cooling cycle is used to condense the humid air, producing fresh water. Parameters such as temperature and relative humidity were measured in different stages of the system by using humidity and temperature sensors, and the thermodynamic analysis was carried out using EES software. The effects of the mass flow rate and temperature of the inlet air flow on the rate of desalination, COP, GOR, and the efficiency of the humidifier and the dehumidifier were studied. The analysis proved that the highest rate of water production and GOR were 150 g/h and 1.2, respectively. It was also perceived that with an increase in the air mass flow rate, the rate of water production and COP increased, while GOR and the efficiency of the dehumidifier diminished. This is while the efficiency of the humidifier remains nearly constant. It was also concluded that an increase in the temperature of the input air, leads to a fall in the GOR, while the other parameters show an increasing trend. Following the economic analysis of the system, the CPL was found to be $0.16 /L.


Main Subjects

  1. Van Vliet, M. T., Jones, E. R., Flörke, M., Franssen, W. H., Hanasaki, N., Wada, Y. and Yearsley, J. R., 2021. Global water scarcity including surface water quality and expansions of clean water technologies, Environmental Research Letters, 16(2), pp. 024020. Doi:10.1088/1748-9326/abbfc3
  2. Elbassoussi, M. H., Ahmed, M., Zubair, S. M. and Qasem, N. A., 2021. On a thermodynamically-balanced humidification-dehumidification desalination system driven by a vapor-absorption heat pump, Energy Conversion and Management, 238, pp. 114142. Doi:10.1016/j.enconman.2021.114142
  3. Mohamed, A., Ahmed, M. S. and Shahdy, A. G., 2020. Theoretical and experimental study of a seawater desalination system based on humidification-dehumidification technique, Renewable Energy, 152, pp. 823-834. Doi:10.1016/j.renene.2020.01.116
  4. Zubair, M. I., Al-Sulaiman, F. A., Antar, M., Al-Dini, S. A. and Ibrahim, N. I., 2017. Performance and cost assessment of solar driven humidification dehumidification desalination system, Energy Conversion and Management, 132, pp. 28-39. Doi:10.1016/j.enconman.2016.10.005
  5. Orfi, J., Galanis, N. and Laplante, M., 2007. Air humidification–dehumidification for a water desalination system using solar energy, Desalination, 203(1-3), pp. 471-481. Doi:10.1016/j.desal.2006.04.022
  6. Soomro, S. H., Santosh, R., Bak, C.-U., Kim, W.-S. and Kim, Y.-D., 2021. Humidification-dehumidification desalination system powered by simultaneous air-water solar heater, Sustainability, 13(23), pp. 13491. Doi:10.3390/su132313491
  7. CichoĊ„, A. and Worek, W., 2021. Analytical Investigation of a Novel System for Combined Dew Point Cooling and Water Recovery, Applied Sciences, 11(4), pp. 1481. Doi:10.3390/app11041481
  8. Faegh, M., Behnam, P. and Shafii, M. B., 2019. A review on recent advances in humidification-dehumidification (HDH) desalination systems integrated with refrigeration, power and desalination technologies, Energy Conversion and Management, 196, pp. 1002-1036. Doi:10.1016/j.enconman.2019.06.063
  9. Lawal, D., Antar, M., Khalifa, A., Zubair, S. and Al-Sulaiman, F., 2018. Humidification-dehumidification desalination system operated by a heat pump, Energy Conversion and Management, 161, pp. 128-140. Doi:10.1016/j.enconman.2018.01.067
  10. Lawal, D. U., Zubair, S. M. and Antar, M. A., 2018. Exergo-economic analysis of humidification-dehumidification (HDH) desalination systems driven by heat pump (HP), Desalination, 443, pp. 11-25. Doi:10.1016/j.desal.2018.05.011
  11. Chen, Q., Burhan, M., Shahzad, M. W., Ybyraiymkul, D., Akhtar, F. H. and Ng, K. C., 2020. Simultaneous production of cooling and freshwater by an integrated indirect evaporative cooling and humidification-dehumidification desalination cycle, Energy Conversion and Management, 221, pp. 113169. Doi:10.1016/j.enconman.2020.113169
  12. Faegh, M. and Shafii, M. B., 2020. Thermal performance assessment of an evaporative condenser-based combined heat pump and humidification-dehumidification desalination system, Desalination, 496, pp. 114733. Doi:10.1016/j.desal.2020.114733
  13. Dehghani, S., Date, A. and Akbarzadeh, A., 2018. Performance analysis of a heat pump driven humidification-dehumidification desalination system, Desalination, 445, pp. 95-104. Doi:10.1016/j.desal.2018.07.033
  14. Shafii, M. B., Jafargholi, H. and Faegh, M., 2018. Experimental investigation of heat recovery in a humidification-dehumidification desalination system via a heat pump, Desalination, 437, pp. 81-88. Doi:10.1016/j.desal.2018.03.004
  15. Yassin, M., 2020. Development of Integrated Water Resources Planning Model for Dublin using WEAP21, Doctoral thesis, Technological University Dublin.
  16. Boligán Rojas, G., Lorenzo Ávila Rondon, R. and Carolina Meléndez Gurrola, A., 2018. Mechanical Engineering Design Theory Framework for Solar Desalination Processes: A Review and Meta-Analysis, Iranian (Iranica) Journal of Energy & Environment, 9(2), pp. 137-145. Doi:10.5829/IJEE.2018.09.02.09
  17. Mistry, K. H. and Mitsos, A., 2011. Optimal operating conditions and configurations for humidification–dehumidification desalination cycles, International Journal of Thermal Sciences, 50(5), pp. 779-789. Doi:10.1016/j.ijthermalsci.2010.12.013
  18. Sharqawy, M. H., Antar, M. A., Zubair, S. M. and Elbashir, A. M., 2014. Optimum thermal design of humidification dehumidification desalination systems, Desalination, 349, pp. 10-21. Doi:10.1016/j.desal.2014.06.016
  19. Zubair, S. M., Antar, M. A., Elmutasim, S. M. and Lawal, D. U., 2018. Performance evaluation of humidification-dehumidification (HDH) desalination systems with and without heat recovery options: An experimental and theoretical investigation, Desalination, 436, pp. 161-175. Doi:10.1016/j.desal.2018.02.018
  20. Santosh, R., Kumaresan, G., Kumar, G. K. and Velraj, R., 2020. Experimental parametric investigation of waste heat powered humidification dehumidification system for production of freshwater from wastewater, Desalination, 484, pp. 114422. Doi:10.1016/j.desal.2020.114422
  21. Rezaei Rad, M., Shafaghat, R., Aghajani Afghan, A. and Alizadeh Kharkeshi, B., 2023. An experimental study to evaluate the performance of an HDH water desalination system with a thermoelectric condenser, Renewable Energy Research and Applications. Doi:10.22044/rera.2023.12548.1191
  22. Kharkeshi, B. A., Shafaghat, R., Jahanian, O., Alamian, R. and Rezanejad, K., 2022. Experimental study of an oscillating water column converter to optimize nonlinear PTO using genetic algorithm, Energy, 260, pp. 124925. Doi:10.1016/J.ENERGY.2022.124925
  23. Shafaghat, R., Fallahi, M., Alizadeh Kharkeshi, B. and Yousefifard, M., 2022. Experimental evaluation of the effect of incident wave frequency on the performance of a dual-chamber oscillating water columns considering resonance phenomenon occurrence, Iranian (Iranica) Journal of Energy & Environment, 13(2), pp. 98-110. Doi:10.5829/IJEE.2022.13.02.01
  24. Alizadeh Kharkeshi, B., Shafaghat, R., Jahanian, O. and Alamian, R., 2021. Experimental evaluation of the effect of dimensionless hydrodynamic coefficients on the performance of a multi-chamber oscillating water column converter in laboratory scale, Modares Mechanical Engineering, 21(12), pp. 823-834, [In Persian]. Available at:
  25. Chahartaghi, M. and Kharkeshi, B. A., 2018. Performance analysis of a combined cooling, heating and power system with PEM fuel cell as a prime mover, Applied Thermal Engineering, 128, pp. 805-817. Doi:10.1016/j.applthermaleng.2017.09.072
  26. Zhang, Y., Zhang, H., Zheng, W., You, S. and Wang, Y., 2019. Optimal operating conditions of a hybrid humidification-dehumidification and heat pump desalination system with multi-objective particle swarm algorithm, Desalination, 468, pp. 114076. Doi:10.1016/j.desal.2019.114076
  27. Mohamed, A., Shahdy, A. G. and Ahmed, M. S., 2021. Investigation on solar humidification dehumidification water desalination system using a closed-air cycle, Applied Thermal Engineering, 188, pp. 116621. Doi:10.1016/j.applthermaleng.2021.116621
  28. Alsehli, M., 2021. A New Approach to Solar Desalination Using a Humidification–Dehumidification Process for Remote Areas, Processes, 9(7), pp. 1120. Doi:10.3390/pr9071120