Document Type : Original Article

Authors

1 Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran

2 Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran

Abstract

Large volumes of contaminated industrial wastewater have caused growing concern among researchers and environmentalists. Benzene, toluene, ethylbenzene, xylene, and styrene (BTEXS) cyclic hydrocarbons in industrial effluents are often completely stable to biodegradation and must be treated before disposal. In this context, using adsorption processes is a potential alternative for treating a wide range of organic pollutants, especially aromatic compounds in industrial wastewater. This study investigated the preparation of MCM-41 from silica; extracted from rice husk ash; MCM-41 was green synthesized to evaluate the effect of mesoporous used in BTEXS removal of an aqueous medium using the Taguchi method. The aqueous solution contains cyclic hydrocarbons was synthetically prepred based on real industrial effluent in concentrations of 50, 100, and 150 mg/l using MCM-41 catalysts, in doses of 0.1, 0.5, and 1g, at different pH values. In the present study, the optimum results obtained by Taguchi method analysis were pH =11, for duration of 60 minutes, the concentration of cyclic hydrocarbon solution BTEXS 100 mg/l, and nanoparticle dose of 0.5 g. The maximum BTEXS removal of 77.36% was achieved by the use of hydrogen peroxide.

Keywords

Main Subjects

  1. Vandana, M. Priyadarshanee, U. Mahto and S. Das, 2022. Chapter 2 - Mechanism of Toxicity and Adverse Health Effects of Environmental Pollutants, in Microbial Biodegradation and Bioremediation (Second Edition), S. Das and H.R. Dash, Editors., Elsevier. p. 33-53. Doi: https://doi.org/10.1016/B978-0-323-85455-9.00024-2
  2. Murungi, P.I. and A.A. Sulaimon, 2022. Petroleum Sludge Treatment and Disposal Techniques: A Review. Environmental Science and Pollution Research. Doi: 10.1007/s11356-022-19614-z
  3. Farias, M.F., Y.S. Domingos, G.J. Turolla Fernandes, F.L. Castro, V.J. Fernandes, M.J. Fonseca Costa and A.S. Araujo, 2018. Effect of Acidity in the Removal-Degradation of Benzene in Water Catalyzed by Co-Mcm-41 in Medium Containing Hydrogen Peroxide. Microporous and Mesoporous Materials, 258, pp: 33-40. Doi: https://doi.org/10.1016/j.micromeso.2017.09.003
  4. Ziabari, S.E.H., T. Tabatabaie, F. Amiri and B. Ramavandi, 2022. Spatial Distribution of Btex Emission and Health Risk Assessment in the Ambient Air of Pars Special Economic Energy Zone (Pseez) Using Passive Sampling. Environmental Monitoring and Assessment, 194(2), pp: 1-18. Doi: https://doi.org/10.1007/s10661-022-09767-2
  5. Wongbunmak, A., Y. Panthongkham, M. Suphantharika and T. Pongtharangkul, 2021. A Fixed-Film Bioscrubber of Microbacterium Esteraromaticum Sbs1-7 for Toluene/Styrene Biodegradation. Journal of Hazardous Materials, 418pp: 126287. Doi: https://doi.org/10.1016/j.jhazmat.2021.126287
  6. Halder, S., Z. Xie, M.H. Nantz and X.-A. Fu, 2022. Integration of a Micropreconcentrator with Solid-Phase Microextraction for Analysis of Trace Volatile Organic Compounds by Gas Chromatography-Mass Spectrometry. Journal of Chromatography A, 1673, pp: 463083. Doi: https://doi.org/10.1016/j.chroma.2022.463083
  7. Wu, X., Q. Hou, J. Huang, J. Chai and F. Zhang, 2021. Exploring the Oh-Initiated Reactions of Styrene in the Atmosphere and the Role of Van Der Waals Complex. Chemosphere, 282, pp: 131004. Doi: https://doi.org/10.1016/j.chemosphere.2021.131004
  8. Moshiran, V.A., A. Karimi, F. Golbabaei, M.S. Yarandi, A.A. Sajedian and A.G. Koozekonan, 2021. Quantitative and Semiquantitative Health Risk Assessment of Occupational Exposure to Styrene in a Petrochemical Industry. Safety and Health at Work, 12(3), pp: 396-402. Doi: https://doi.org/10.1016/j.shaw.2021.01.009
  9. Yu, B., Z. Yuan, Z. Yu and F. Xue-song, 2022. Btex in the Environment: An Update on Sources, Fate, Distribution, Pretreatment, Analysis, and Removal Techniques. Chemical Engineering Journal, 435, pp: 134825. Doi: https://doi.org/10.1016/j.cej.2022.134825
  10. Li, K., Y. He, J. Li, J. Sheng, Y. Sun, J. Li and F. Dong, 2021. Identification of Deactivation-Resistant Origin of in(Oh)3 for Efficient and Durable Photodegradation of Benzene, Toluene and Their Mixtures. Journal of Hazardous Materials, 416, pp: 126208. Doi: https://doi.org/10.1016/j.jhazmat.2021.126208
  11. Muneron Mello, J.M., H.L. Brandão, A. Valério, A.A.U. de Souza, D. de Oliveira, A. da Silva and S.M.A.G.U. de Souza, 2019. Biodegradation of Btex Compounds from Petrochemical Wastewater: Kinetic and Toxicity. Journal of Water Process Engineering, 32, pp: 100914. Doi: https://doi.org/10.1016/j.jwpe.2019.100914
  12. Tang, W., X. Li, H. Liu, S. Wu, Q. Zhou, C. Du, Q. Teng, Y. Zhong and C. Yang, 2020. Sequential Vertical Flow Trickling Filter and Horizontal Flow Multi-Soil-Layering Reactor for Treatment of Decentralized Domestic Wastewater with Sodium Dodecyl Benzene Sulfonate. Bioresource Technology, 300, pp: 122634. Doi: https://doi.org/10.1016/j.biortech.2019.122634
  13. Ma, Z., D. Yao, J. Zhao, H. Li, Z. Chen, P. Cui, Z. Zhu, L. Wang, Y. Wang, Y. Ma and J. Gao, 2021. Efficient Recovery of Benzene and N-Propanol from Wastewater Via Vapor Recompression Assisted Extractive Distillation Based on Techno-Economic and Environmental Analysis. Process Safety and Environmental Protection, 148, pp: 462-472. Doi: https://doi.org/10.1016/j.psep.2020.10.033
  14. Casado, E., M.C. Garcia, D.A. Krawczyk, F.J. Romero‐Salguero and A. Rodero, 2020. Study of the Plasma–Liquid Interaction for an Argon Nonthermal Microwave Plasma Jet from the Analysis of Benzene Degradation. Plasma Processes and Polymers, 17(9), pp: 2000030. Doi: https://doi.org/10.1002/ppap.202000030
  15. Piekutin, J., 2021. The Identification of Fouling in Reverse Osmosis in Reverse Osmosis in the Treatment of Water with Petroleum Substances. Water, 13(8), pp: 1092. Doi: https://doi.org/10.3390/w13081092
  16. Guo, Y., Q. Xue, H. Zhang, N. Wang, S. Chang, Y. Fang, H. Wang, F. Yuan, H. Pang and H. Chen, 2018. Highly Efficient Treatment of Real Benzene Dye Intermediate Wastewater by Simple Limestone and Lime Neutralization-Coagulation with Improved Fenton Oxidation. Environmental Science and Pollution Research, 25(31), pp: 31125-31135. Doi: 10.1007/s11356-018-3101-0
  17. da Costa, J.S., E.G. Bertizzolo, D. Bianchini and A.R. Fajardo, 2021. Adsorption of Benzene and Toluene from Aqueous Solution Using a Composite Hydrogel of Alginate-Grafted with Mesoporous Silica. Journal of Hazardous Materials, 418, pp: 126405. Doi: https://doi.org/10.1016/j.jhazmat.2021.126405
  18. Gu, W., J. Guo, J. Bai, B. Dong, J. Hu, X. Zhuang, C. Zhang and K. Shih, 2022. Co-Pyrolysis of Sewage Sludge and Ca(H2po4)2: Heavy Metal Stabilization, Mechanism, and Toxic Leaching. Journal of Environmental Management, 305, pp: 114292. Doi: https://doi.org/10.1016/j.jenvman.2021.114292
  19. Abdullah, F.H., N.H.H.A. Bakar and M.A. Bakar, 2022. Current Advancements on the Fabrication, Modification, and Industrial Application of Zinc Oxide as Photocatalyst in the Removal of Organic and Inorganic Contaminants in Aquatic Systems. Journal of Hazardous Materials, 424, pp: 127416. Doi: https://doi.org/10.1016/j.jhazmat.2021.127416
  20. Crini, G., C. Cosentino, C. Bradu, M. Fourmentin, G. Torri, O. Ruzimuradov, I.A. Alaton, M.C. Tomei, J. Derco, M. Barhoumi, H. Prosen, B.N. Malinović, M. Vrabeľ, M.M. Huq, J. Soltan, E. Lichtfouse and N. Morin-Crini, 2022. Innovative Technologies to Remove Alkylphenols from Wastewater: A Review. Environmental Chemistry Letters. Doi: 10.1007/s10311-022-01438-5
  21. Madhubashani, A.M.P., D.A. Giannakoudakis, B.M.W.P.K. Amarasinghe, A.U. Rajapaksha, P.B.T. Pradeep Kumara, K.S. Triantafyllidis and M. Vithanage, 2021. Propensity and Appraisal of Biochar Performance in Removal of Oil Spills: A Comprehensive Review. Environmental Pollution, 288, pp: 117676. Doi: https://doi.org/10.1016/j.envpol.2021.117676
  22. Mohammad, Y., E. Shaibu-Imodagbe, S. Igboro, A. Giwa and C. Okuofu, 2014. Adsorption of Phenol from Refinery Wastewater Using Rice Husk Activated Carbon. Iranian (Iranica) Journal of Energy & Environment, 5(4), pp 393-399. Doi: 10.5829/idosi.ijee.2014.05.04.07
  23. Costa, J.A.S., R.A. de Jesus, D.O. Santos, J.B. Neris, R.T. Figueiredo and C.M. Paranhos, 2021. Synthesis, Functionalization, and Environmental Application of Silica-Based Mesoporous Materials of the M41s and Sba-N Families: A Review. Journal of Environmental Chemical Engineering, 9(3), pp: 105259. Doi: https://doi.org/10.1016/j.jece.2021.105259
  24. Costa, J.A.S., R.A. de Jesus, D.O. Santos, J.F. Mano, L.P.C. Romão and C.M. Paranhos, 2020. Recent Progresses in the Adsorption of Organic, Inorganic, and Gas Compounds by Mcm-41-Based Mesoporous Materials. Microporous and Mesoporous Materials, 291, pp: 109698. Doi: https://doi.org/10.1016/j.micromeso.2019.109698
  25. Jankowska, A., A. Chłopek, A. Kowalczyk, M. Rutkowska, W. Mozgawa, M. Michalik, S. Liu and L. Chmielarz, 2021. Enhanced Catalytic Performance in Low-Temperature Nh3-Scr Process of Spherical Mcm-41 Modified with Cu by Template Ion-Exchange and Ammonia Treatment. Microporous and Mesoporous Materials, 315, pp: 110920. Doi: https://doi.org/10.1016/j.micromeso.2021.110920
  26. Bahari, M.B., A.A. Jalil, C.R. Mamat, N.S. Hassan, H.D. Setiabudi and D.V.N. Vo, 2022. Insight into the Development of Silica-Based Materials as Photocatalysts for Co2 Photoconversion Towards Ch3oh: A Review and Recent Progress. Surfaces and Interfaces, 31, pp: 102049. Doi: https://doi.org/10.1016/j.surfin.2022.102049
  27. Habeche, F., M. Hachemaoui, A. Mokhtar, K. Chikh, F. Benali, A. Mekki, F. Zaoui, Z. Cherifi and B. Boukoussa, 2020. Recent Advances on the Preparation and Catalytic Applications of Metal Complexes Supported-Mesoporous Silica Mcm-41 (Review). Journal of Inorganic and Organometallic Polymers and Materials, 30(11), pp: 4245-4268. Doi: 10.1007/s10904-020-01689-1
  28. Kwan, W.H. and Y.S. Wong, 2020. Acid Leached Rice Husk Ash (Arha) in Concrete: A Review. Materials Science for Energy Technologies, 3, pp: 501-507. Doi: https://doi.org/10.1016/j.mset.2020.05.001
  29. AbuKhadra, M.R., A.S. Mohamed, A.M. El-Sherbeeny and M.A. Elmeligy, 2020. Enhanced Photocatalytic Degradation of Acephate Pesticide over Mcm-41/Co3o4 Nanocomposite Synthesized from Rice Husk Silica Gel and Peach Leaves. Journal of Hazardous Materials, 389, pp: 122129. Doi: https://doi.org/10.1016/j.jhazmat.2020.122129
  30. Cheng, Z., J. Li, P. Yang and S. Zuo, 2018. Preparation of Mnco/Mcm-41 Catalysts with High Performance for Chlorobenzene Combustion. Chinese Journal of Catalysis, 39(4), pp: 849-856. Doi: https://doi.org/10.1016/S1872-2067(17)62950-4
  31. Liou, T.-H. and P.-Y. Wang, 2020. Utilization of Rice Husk Wastes in Synthesis of Graphene Oxide-Based Carbonaceous Nanocomposites. Waste Management, 108pp: 51-61. Doi: https://doi.org/10.1016/j.wasman.2020.04.029
  32. Kanthe, V., 2021. Effect of Superplasticizer on Strength and Durability of Rice Husk Ash Concrete. Iranian (Iranica) Journal of Energy & Environment, 12(3), pp: 204-208. Doi: 10.5829/ijee.2021.12.03.04
  33. Odeyemi, S., R. Abdulwahab, M. Akinpelu, R. Afolabi and O. Atoyebi, 2022. Strength Properties of Steel and Bamboo Reinforced Concrete Containing Quarry Dust, Rice Husk Ash and Guinea Corn Husk Ash. Iranian (Iranica) Journal of Energy & Environment, 13(4), pp: 354-362. Doi: 10.5829/ijee.2022.13.04.05
  34. Liu, Y., C. Li, A. Peyravi, Z. Sun, G. Zhang, K. Rahmani, S. Zheng and Z. Hashisho, 2021. Mesoporous Mcm-41 Derived from Natural Opoka and Its Application for Organic Vapors Removal. Journal of Hazardous Materials, 408, pp: 124911. Doi: https://doi.org/10.1016/j.jhazmat.2020.124911
  35. Liu, Y., J. Liao, L. Chang and W. Bao, 2022. Ag Modification of Sba-15 and Mcm-41 Mesoporous Materials as Sorbents of Thiophene. Fuel, 311, pp: 122537. Doi: https://doi.org/10.1016/j.fuel.2021.122537
  36. Ye, Z., J.M. Giraudon, N. Nuns, P. Simon, N. De Geyter, R. Morent and J.F. Lamonier, 2018. Influence of the Preparation Method on the Activity of Copper-Manganese Oxides for Toluene Total Oxidation. Applied Catalysis B: Environmental, 223, pp: 154-166. Doi: https://doi.org/10.1016/j.apcatb.2017.06.072
  37. Dong, Y., J. Sun, X. Ma, W. Wang, Z. Song, X. Zhao, Y. Mao and W. Li, 2022. Study on the Synergy Effect of Mnox and Support on Catalytic Ozonation of Toluene. Chemosphere, 303, pp: 134991. Doi: https://doi.org/10.1016/j.chemosphere.2022.134991
  38. Ma, M., K. Gao, D. Zhao, X. Ma and Z. Ma, 2022. Effect of Process Conditions on Reaction-Type Adsorption of O-Xylene by Mcm-41 Supported Sulfuric Acid: Model Simulations of Breakthrough Curves. Journal of Environmental Chemical Engineering, 10(1), pp: 106937. Doi: https://doi.org/10.1016/j.jece.2021.106937
  39. Li, X., J. Wang, Y. Guo, T. Zhu and W. Xu, 2021. Adsorption and Desorption Characteristics of Hydrophobic Hierarchical Zeolites for the Removal of Volatile Organic Compounds. Chemical Engineering Journal, 411, pp: 128558. Doi: https://doi.org/10.1016/j.cej.2021.128558
  40. Andas, J., S.H. Ekhbal and T.H. Ali, 2021. Mcm-41 Modified Heterogeneous Catalysts from Rice Husk for Selective Oxidation of Styrene into Benzaldehyde. Environmental Technology & Innovation, 21, pp: 101308. Doi: https://doi.org/10.1016/j.eti.2020.101308
  41. Gao, K., M. Ma, Y. Liu and Z. Ma, 2021. A Comparative Study of the Removal of O-Xylene from Gas Streams Using Mesoporous Silicas and Their Silica Supported Sulfuric Acids. Journal of Hazardous Materials, 409, pp: 124965. Doi: https://doi.org/10.1016/j.jhazmat.2020.124965
  42. Li, Y., N. Bonyadi and B. Lee, 2022. A Parallel Decomposition Approach for Building Design Optimization. Journal of Building Engineering, 54, pp: 104574. Doi: https://doi.org/10.1016/j.jobe.2022.104574
  43. Zhang, F., M. Wang and M. Yang, 2021. Successful Application of the Taguchi Method to Simulated Soil Erosion Experiments at the Slope Scale under Various Conditions. CATENA, 196, pp: 104835. Doi: https://doi.org/10.1016/j.catena.2020.104835
  44. Kechagias, J.D., K.-E. Aslani, N.A. Fountas, N.M. Vaxevanidis and D.E. Manolakos, 2020. A Comparative Investigation of Taguchi and Full Factorial Design for Machinability Prediction in Turning of a Titanium Alloy. Measurement, 151, pp: 107213. Doi: https://doi.org/10.1016/j.measurement.2019.107213
  45. Dagdevir, T. and V. Ozceyhan, 2021. Optimization of Process Parameters in Terms of Stabilization and Thermal Conductivity on Water Based Tio2 Nanofluid Preparation by Using Taguchi Method and Grey Relation Analysis. International Communications in Heat and Mass Transfer, 120, pp: 105047. Doi: https://doi.org/10.1016/j.icheatmasstransfer.2020.105047
  46. Ikeagwuani, C.C., D.C. Nwonu, C.K. Ugwu and C.C. Agu, 2020. Process Parameters Optimization for Eco-Friendly High Strength Sandcrete Block Using Taguchi Method. Heliyon, 6(6), pp: e04276. Doi: https://doi.org/10.1016/j.heliyon.2020.e04276
  47. Schleinkofer, U., M. Dazer, K. Lucan, O. Mannuß, B. Bertsche and T. Bauernhansl, 2019. Framework for Robust Design and Reliability Methods to Develop Frugal Manufacturing Systems. Procedia CIRP, 81, pp: 518-523. Doi: https://doi.org/10.1016/j.procir.2019.03.148
  48. Madu, I.E. and C.N. Madu, 1999. Design Optimization Using Signal-to-Noise Ratio. Simulation Practice and Theory, 7(4), pp: 349-372. Doi: https://doi.org/10.1016/S0928-4869(99)00008-7
  49. Sathish Kumar, T., R. Vignesh, B. Ashok, P. Saiteja, A. Jacob, C. Karthick, A.K. Jeevanantham, M. Senthilkumar and K. Muhammad Usman, 2022. Application of Statistical Approaches in Ic Engine Calibration to Enhance the Performance and Emission Characteristics: A Methodological Review. Fuel, 324, pp: 124607. Doi: https://doi.org/10.1016/j.fuel.2022.124607
  50. Nayak, P. and A. Datta, 2021. Synthesis of Sio2-Nanoparticles from Rice Husk Ash and Its Comparison with Commercial Amorphous Silica through Material Characterization. Silicon, 13(4), pp: 1209-1214. Doi: https://doi.org/10.1007/s12633-020-00509-y
  51. Kamari, S. and F. Ghorbani, 2021. Extraction of Highly Pure Silica from Rice Husk as an Agricultural by-Product and Its Application in the Production of Magnetic Mesoporous Silica Mcm–41. Biomass Conversion and Biorefinery, 11(6), pp: 3001-3009. Doi: https://doi.org/10.1007/s13399-020-00637-w
  52. Cai, Q., Z.-S. Luo, W.-Q. Pang, Y.-W. Fan, X.-H. Chen and F.-Z. Cui, 2001. Dilute Solution Routes to Various Controllable Morphologies of Mcm-41 Silica with a Basic Medium. Chemistry of materials, 13(2), pp: 258-263. Doi: https://doi.org/10.1021/cm990661z
  53. Amanollahi, H., G. Moussavi and S. Giannakis, 2019. Vuv/Fe(Ii)/H2o2 as a Novel Integrated Process for Advanced Oxidation of Methyl Tert-Butyl Ether (Mtbe) in Water at Neutral Ph: Process Intensification and Mechanistic Aspects. Water Research, 166, pp: 115061. Doi: https://doi.org/10.1016/j.watres.2019.115061
  54. Zhong, J., J. Huang, Y. Liu, D. Li, C. Tan, P. Chen, H. Liu, X. Zheng, C. Wen, W. Lv and G. Liu, 2022. Construction of Double-Functionalized G-C3n4 Heterojunction Structure Via Optimized Charge Transfer for the Synergistically Enhanced Photocatalytic Degradation of Sulfonamides and H2O2 Production. Journal of Hazardous Materials, 422, pp: 126868. Doi: https://doi.org/10.1016/j.jhazmat.2021.126868
  55. Cai, H., X. Liu, J. Zou, J. Xiao, B. Yuan, F. Li and Q. Cheng, 2018. Multi-Wavelength Spectrophotometric Determination of Hydrogen Peroxide in Water with Peroxidase-Catalyzed Oxidation of Abts. Chemosphere, 193, pp: 833-839. Doi: https://doi.org/10.1016/j.chemosphere.2017.11.091
  56. Klaewkla, R., T. Rirksomboon, S. Kulprathipanja, L. Nemeth and P. Rangsunvigit, 2006. Light Sensitivity of Phenol Hydroxylation with Ts-1. Catalysis Communications, 7(5), pp: 260-263. Doi: https://doi.org/10.1016/j.catcom.2005.10.015
  57. Sharma, S., U.P. Singh and A.P. Singh, 2021. Synthesis of Mcm-41 Supported Cobalt (Ii) Complex for the Formation of Polyhydroquinoline Derivatives. Polyhedron, 199, pp: 115102. Doi: https://doi.org/10.1016/j.poly.2021.115102
  58. Ullah, Z., Z. Man, A.S. Khan, N. Muhammad, H. Mahmood, O. Ben Ghanem, P. Ahmad, M.-U. Hassan Shah, R. Mamoon Ur and M. Raheel, 2019. Extraction of Valuable Chemicals from Sustainable Rice Husk Waste Using Ultrasonic Assisted Ionic Liquids Technology. Journal of Cleaner Production, 220, pp: 620-629. Doi: https://doi.org/10.1016/j.jclepro.2019.02.041
  59. Santana Costa, J.A. and C.M. Paranhos, 2018. Systematic Evaluation of Amorphous Silica Production from Rice Husk Ashes. Journal of Cleaner Production, 192, pp: 688-697. Doi: https://doi.org/10.1016/j.jclepro.2018.05.028
  60. Saloni, Parveen and T.M. Pham, 2020. Enhanced Properties of High-Silica Rice Husk Ash-Based Geopolymer Paste by Incorporating Basalt Fibers. Construction and Building Materials, 245, pp: 118422. Doi: https://doi.org/10.1016/j.conbuildmat.2020.118422
  61. Gao, Y., R.-y. Zhou, L. Yao, W. Yin, J.-x. Yu, Q. Yue, Z. Xue, H. He and B. Gao, 2022. Synthesis of Rice Husk-Based Ion-Imprinted Polymer for Selective Capturing Cu(Ii) from Aqueous Solution and Re-Use of Its Waste Material in Glaser Coupling Reaction. Journal of Hazardous Materials, 424, pp: 127203. Doi: https://doi.org/10.1016/j.jhazmat.2021.127203
  62. Robatjazi, Z.S., M.R. Naimi-Jamal and M. Tajbakhsh, 2022. Synthesis and Characterization of Highly Efficient and Recoverable Cu@Mcm-41-(2-Hydroxy-3-Propoxypropyl) Metformin Mesoporous Catalyst and Its Uses in Ullmann Type Reactions. Scientific Reports, 12(1), pp: 4949. Doi: 10.1038/s41598-022-08902-w
  63. Viswanadham, B., V. Vishwanathan, K.V.R. Chary and Y. Satyanarayana, 2021. Catalytic Dehydration of Glycerol to Acrolein over Mesoporous Mcm-41 Supported Heteropolyacid Catalysts. Journal of Porous Materials, 28(4), pp: 1269-1279. Doi: 10.1007/s10934-021-01070-8
  64. A. Mannaa, M., H.M. Altass and R.S. Salama, 2021. Mcm-41 Grafted with Citric Acid: The Role of Carboxylic Groups in Enhancing the Synthesis of Xanthenes and Removal of Heavy Metal Ions. Environmental Nanotechnology, Monitoring & Management, 15, pp: 100410. Doi: https://doi.org/10.1016/j.enmm.2020.100410
  65. Mehdinia, S.M., K. Moeinian and T. Rastgoo, 2014. Rice Husk Silica Adsorbent for Removal of Hexavalent Chromium Pollution from Aquatic Solutions. Iranica Journal of Energy & Environment, 5(2), pp: 218-223. Doi: 10.5829/idosi.ijee.2014.05.02.15
  66. Narges Elmi, F. and F. Reza, 2018. Optimization of Operating Parameters in Photocatalytic Activity of Visible Light Active Ag/Tio2 Nanoparticles. Russian Journal of Physical Chemistry A, 92(13), pp: 2835-2846. Doi: 10.1134/S0036024418130071
  67. Hua, X., X. Song, M. Yuan and D. Donga, 2011. The Factors Affecting Relationship between Cod and Toc of Typical Papermaking Wastewater, in Advances in Computer Science, Intelligent System and Environment. Springer. p. 239-244. Doi: https://doi.org/10.1007/978-3-642-23756-0_39
  68. Liu, Y., Y. Zhao and J. Wang, 2021. Fenton/Fenton-Like Processes with in-Situ Production of Hydrogen Peroxide/Hydroxyl Radical for Degradation of Emerging Contaminants: Advances and Prospects. Journal of Hazardous Materials, 404, pp: 124191. Doi: https://doi.org/10.1016/j.jhazmat.2020.124191
  69. Suh, J.H. and M. Mohseni, 2004. A Study on the Relationship between Biodegradability Enhancement and Oxidation of 1,4-Dioxane Using Ozone and Hydrogen Peroxide. Water Research, 38(10), pp: 2596-2604. Doi: https://doi.org/10.1016/j.watres.2004.03.002
  70. Farhadi, N., T. Tabatabaie, B. Ramavandi and F. Amiri, 2021. Ibuprofen Elimination from Water and Wastewater Using Sonication/Ultraviolet/Hydrogen Peroxide/Zeolite-Titanate Photocatalyst System. Environmental Research, 198, pp: 111260. Doi: https://doi.org/10.1016/j.envres.2021.111260
  71. Bellouk, H., I.E. Mrabet, K. Tanji, M. Nawdali, M. Benzina, M. Eloussaief and H. Zaitan, 2022. Performance of Coagulation-Flocculation Followed by Ultra-Violet/Ultrasound Activated Persulfate/Hydrogen Peroxide for Landfill Leachate Treatment. Scientific African, 17, pp: e01312. Doi: https://doi.org/10.1016/j.sciaf.2022.e01312
  72. Chen, Z., M. Fu, C. Yuan, X. Hu, J. Bai, R. Pan, P. Lu and M. Tang, 2022. Study on the Degradation of Tetracycline in Wastewater by Micro-Nano Bubbles Activated Hydrogen Peroxide. Environmental Technology, 43(23), pp: 3580-3590. Doi: 10.1080/09593330.2021.1928292