One-year Dynamic Study of the Use of Solar Water Heater for Domestic Consumption in Egypt: An Energy Assessment

Document Type : Original Article


1 Department of Mechanical Engineering, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran

2 Energy Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran

3 Department of Physics, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran

4 Department of Biomedical Engineering, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran

5 College of Skills and Entrepreneurship, Islamic Azad University, Shahrekord Branch, Shahrekord, Iran


The use of fossil fuels leads to greenhouse gas emissions, global warming, and secondary consequences such as desertification and winds in the Middle East and Africa, including Egypt. The use of renewable energy is the most appropriate solution to prevent the emission of polluting gases. Egypt is one of the best places to use solar water heating systems, located in the solar belt. In this paper, for the first time, the best place to use solar water heater (SWH) systems is examined using TSOL 2018 R(1) software and climate data for residential apartments in 35 stations in Egypt. The results showed that Sharm el sheikh station with supplies 96.8% of its total heat needs is the most suitable station for using solar water heating systems. According to the studies performed, using solar water heaters in the studied stations generated good energy savings annually (production of 134.5 GWh of solar heat). Also, greenhouse gas emissions were significantly reduced (preventing the emission of about 39.2 tons of CO2 pollutants per year) and as a result, the government should turn to the use of clean and renewable energy.


Main Subjects

  1. Dadak, A., Mousavi, S. A., Mehrpooya, M. and Kasaeian, A., 2022. Techno-economic investigation and dual-objective optimization of a stand-alone combined configuration for the generation and storage of electricity and hydrogen applying hybrid renewable system, Renewable Energy, 201, pp. 1-20. Doi:10.1016/j.renene.2022.10.085
  2. Chabane, F., Moummi, N., Toumi, C., Boultif, S. and Hecini, A., 2023. Theoretical Study of Global Solar Radiation on Horizontal Area for Determination of Direct and Diffuse Solar Radiation, Iranian (Iranica) Journal of Energy & Environment, 14(1), pp. 9-16. Doi:10.5829/ijee.2023.14.01.02
  3. Jahangir, M. H., Montazeri, M., Mousavi, S. A. and Kargarzadeh, A., 2022. Reducing carbon emissions of industrial large livestock farms using hybrid renewable energy systems, Renewable Energy, 189, pp. 52-65. Doi:10.1016/j.renene.2022.02.022
  4. Mehrpooya, M., Mousavi, S. A., Asadnia, M., Zaitsev, A. and Sanavbarov, R., 2021. Conceptual design and evaluation of an innovative hydrogen purification process applying diffusion-absorption refrigeration cycle (Exergoeconomic and exergy analyses), Journal of Cleaner Production, 316, pp. 128271. Doi:10.1016/j.jclepro.2021.128271
  5. Prem Kumar, S. and Kumar, G., 2023. Evaluation of Energy Performances of Solar Dryers, Iranian (Iranica) Journal of Energy & Environment, 14(1), pp. 58-64. Doi:10.5829/IJEE.2023.14.01.08
  6. Shiravi, A. and Firoozzadeh, M., 2022. A Novel Proposed Improvement on Performance of a Photovoltaic/Water Pumping System: Energy and Environmental Analysis, Iranian (Iranica) Journal of Energy & Environment, 13(2), pp. 202-208. Doi:10.5829/ijee.2022.13.02.11
  7. Tayari, N. and Nikpour, M., 2022. Investigation on Daylight Quality of Central Courtyard’s Adjacent Rooms in Traditional Houses in Hot Dry Region of Iran: A Case Study Yazdanpanah House, Iranian (Iranica) Journal of Energy & Environment, 13(4), pp. 320-332. Doi:10.5829/ijee.2022.13.04.01
  8. Jahangiri, M., Haghani, A., Heidarian, S., Mostafaeipour, A., Raiesi, H. A. and Alidadi Shamsabadi, A., 2020. Sensitivity analysis of using solar cells in regional electricity power supply of off-grid power systems in Iran, Journal of Engineering, Design and Technology, 18(6), pp. 1849-1866. Doi:10.1108/JEDT-10-2019-0268
  9. Mostafaeipour, A., Goudarzi, H., Sedaghat, A., Jahangiri, M., Hadian, H., Rezaei, M., Golmohammadi, A.-M. and Karimi, P., 2019. Energy efficiency for cooling buildings in hot and dry regions using sol-air temperature and ground temperature effects, Journal of Engineering, Design and Technology, 17(3), pp. 613-628. Doi:10.1108/JEDT-12-2018-0216
  10. Jahangir, M. H., Eslamnezhad, S., Mousavi, S. A. and Askari, M., 2021. Multi-year sensitivity evaluation to supply prime and deferrable loads for hospital application using hybrid renewable energy systems, Journal of Building Engineering, 40, pp. 102733. Doi:10.1016/j.jobe.2021.102733
  11. Mousavi, S. A., Mehrpooya, M., Rad, M. A. V. and Jahangir, M. H., 2021. A new decision-making process by integration of exergy analysis and techno-economic optimization tool for the evaluation of hybrid renewable systems, Sustainable Energy Technologies and Assessments, 45, pp. 101196. Doi:10.1016/j.seta.2021.101196
  12. Riahi Zaniani, J., Taghipour Ghahfarokhi, S., Jahangiri, M. and Alidadi Shamsabadi, A., 2019. Design and optimization of heating, cooling and lightening systems for a residential villa at Saman city, Iran, Journal of Engineering, Design and Technology, 17(1), pp. 41-52. Doi:10.1108/JEDT-01-2018-0003
  13. Nafey, A., Fath, H. E., El-Helaby, S. and Soliman, A., 2004. Solar desalination using humidification–dehumidification processes. Part II. An experimental investigation, Energy Conversion and Management, 45(7-8), pp. 1263-1277. Doi:10.1016/S0196-8904(03)00152-3
  14. Gandjalikhan Nassab, S., 2022. Performance Enforcement of a Parabolic Solar Collector with a Separating Transparent Glass Sheet, Iranian (Iranica) Journal of Energy & Environment, 13(2), pp. 158-168. Doi:10.5829/ijee.2022.13.02.07
  15. Ameri, M., Farzan, H. and Nobari, M., 2021. Evaluation of different glazing materials, strategies, and configurations in flat plate collectors using glass and acrylic covers: An experimental assessment, Iranian (Iranica) Journal of Energy & Environment, 12(4), pp. 297-306. Doi:10.5829/ijee.2021.12.04.03
  16. Solar Resource Maps of Egypt. Available at:
  17. Weiss, W. and Mauthner, F., 2010. Solar heat worldwide, Markets and contribution to the energy supply.
  18. Aliyu, A. K., Modu, B. and Tan, C. W., 2018. A review of renewable energy development in Africa: A focus in South Africa, Egypt and Nigeria, Renewable and Sustainable Energy Reviews, 81, pp. 2502-2518. Doi:10.1016/j.rser.2017.06.055
  19. Yıldırım, C. and Solmuş, İ., 2014. A parametric study on a humidification–dehumidification (HDH) desalination unit powered by solar air and water heaters, Energy Conversion and Management, 86, pp. 568-575. Doi:10.1016/j.enconman.2014.06.016
  20. Abdrabo, M. A. and Soliman, M., 2008. Economic assessment of solar water heaters potentials in Egypt, Journal of Commercial and Management Studies, (4), pp. 3-18.
  21. Nasser, S. S., Bahnasawy, A. H., Ashour, T. H. and Khater, E. G., 2021. Utilization of solar energy in greenhouse heating during winter season in Egypt, Misr Journal of Agricultural Engineering, 38(2), pp. 181-194. Doi:10.21608/mjae.2021.59760.1023
  22. Kotb, K. M., Elkadeem, M., Khalil, A., Imam, S. M., Hamada, M. A., Sharshir, S. W. and Dán, A., 2021. A fuzzy decision-making model for optimal design of solar, wind, diesel-based RO desalination integrating flow-battery and pumped-hydro storage: Case study in Baltim, Egypt, Energy Conversion and Management, 235, pp. 113962. Doi:10.1016/j.enconman.2021.113962
  23. Sharshir, S., Peng, G., Yang, N., Eltawil, M. A., Ali, M. K. A. and Kabeel, A., 2016. A hybrid desalination system using humidification-dehumidification and solar stills integrated with evacuated solar water heater, Energy Conversion and Management, 124, pp. 287-296. Doi:10.1016/j.enconman.2016.07.028
  24. Farrag, N. M. E. and Mahmoud, A., 2016. Activate Application of Solar Water Heating in Residential Buildings - Cairo-Egypt, ARPN Journal of Engineering and Applied Sciences, 11(3), pp. 18.
  25. Fahmy, F., Nafeh, A., Ahamed, N. and Farghally, H., 2010. Thermal collector for water and space heating system in Egypt, Renewable Energy and Power Quality Journal, 1(08), pp. 1592-1597. Doi:10.24084/repqjo8.730
  26. Omara, Z., Kabeel, A. and Younes, M., 2014. Enhancing the stepped solar still performance using internal and external reflectors, Energy Conversion and Management, 78, pp. 876-881. Doi:10.1016/j.enconman.2013.07.092
  27. Baum, C., Soliman, A. S., Brown, H. E., Seifeldin, I. A., Ramadan, M., Lott, B., Nguyen, A., El-Ghawalby, A. and Hablas, A., 2020. Regional variation of pancreatic cancer incidence in the Nile Delta region of Egypt over a twelve-year period, Journal of Cancer Epidemiology, 2020. Doi:10.1155/2020/6031708
  28. Mortazavi, M., Yaghoubi, S. and Jahangiri, M., 2022. Investigating the effect of buffer tank type on technical and environmental performance of solar heating systems in Iran, International Journal of Smart Electrical Engineering, 11(2), pp. 55-61. Doi:10.30495/ijsee.2022.1952896.1174
  29. Rezapour, S., Jahangiri, M., Shahrezaie, A. G., Goli, A., Farsani, R. Y., Almutairi, K., Ao, H. X., Dehshiri, S. J. H., Dehshiri, S. S. H. and Mostafaeipour, A., 2022. Dynamic simulation and ranking of using residential-scale solar water heater in Iran, Journal of Environmental Engineering and Landscape Management, 30(1), pp. 30-42. Doi:10.3846/jeelm.2022.15483
  30. Jahangiri, M., Akinlabi, E. T. and Sichilalu, S. M., 2021. Assessment and modeling of household-scale solar water heater application in Zambia: technical, environmental, and energy analysis, International Journal of Photoenergy, 2021, pp. 1-13. Doi:10.1155/2021/6630338
  31. Siampour, L., Vahdatpour, S., Jahangiri, M., Mostafaeipour, A., Goli, A., Shamsabadi, A. A. and Atabani, A., 2021. Techno-enviro assessment and ranking of Turkey for use of home-scale solar water heaters, Sustainable Energy Technologies and Assessments, 43, pp. 100948. Doi:10.1016/j.seta.2020.100948
  32. Kalbasi, R., Jahangiri, M., Mosavi, A., Dehshiri, S. J. H., Dehshiri, S. S. H., Ebrahimi, S., Etezadi, Z. A.-S. and Karimipour, A., 2021. Finding the best station in Belgium to use residential-scale solar heating, one-year dynamic simulation with considering all system losses: economic analysis of using ETSW, Sustainable Energy Technologies and Assessments, 45, pp. 101097. Doi:10.1016/j.seta.2021.101097
  33. Zaniani, J. R., Dehkordi, R. H., Bibak, A., Bayat, P. and Jahangiri, M., 2015. Examining the possibility of using solar energy to provide warm water using RETScreen4 software (Case study: Nasr primary school of pirbalut), Current World Environment, 10(Special Issue), pp. 835. Doi:10.12944/CWE.10.Special-Issue1.101
  34. Jahangir, M. H., Mousavi, S. A. and Asayesh Zarchi, R., 2021. Implementing single-and multi-year sensitivity analyses to propose several feasible solutions for meeting the electricity demand in large-scale tourism sectors applying renewable systems, Environment, Development and Sustainability, pp. 1-34. Doi:10.1007/s10668-021-01254-x
  35. Mousavi, S. A., Mehrpooya, M. and Delpisheh, M., 2022. Development and life cycle assessment of a novel solar-based cogeneration configuration comprised of diffusion-absorption refrigeration and organic Rankine cycle in remote areas, Process Safety and Environmental Protection, 159, pp. 1019-1038. Doi:10.1016/j.psep.2022.01.067