Hydropower Development in Three South American Countries: Brazil, Colombia, and Ecuador

Document Type : Original Article


1 Department of Sustainability, Polytechnic University of Catalonia, Barcelona, Ecuador

2 Quevedo Technical University, Faculty of Mechanical Engineering, Ecuador

3 Technical University of Ambato, Faculty of Mechanical Engineering, Ecuador

4 Department of Sustainability, Polytechnic University of Catalonia, Barcelona, Spain


The present manuscript aims to identify the advantages and consequences of hydropower development, showing a view of trends finding the status and situation in Brazil, Colombia, and Ecuador. This study uses a non-experimental methodology based on a comprehensive literature review of relevant papers retrieved from 41 selected papers that are summarized covering different application areas in these selected countries. In addition, the non-experimental methodology is guided by a perspective design sequential with a qualitative phase defining two indicators that do a relation between the people and the installed capacity in megawatts (MW) and energy production in gigawatts hour (GWh). The results show Colombia has the main installed capacity and energy generation per capita, followed by Ecuador, and finally, Brazil. According to the models and studies, the general hydropower potential of Brazil, Colombia, and Ecuador decreases as time goes on because this renewable energy affects the water quality, interacting deeply with the surrounding environment. However, in South American countries only 34% of hydropower potential has developed.


Main Subjects

  1. Llamosas, C., and Sovacool, B.K., 2021. The future of hydropower? A systematic review of the drivers, benefits and governance dynamics of transboundary dams. Renewable and Sustainable Energy Reviews, 137, pp.110495. Doi: 10.1016/j.rser.2020.110495
  2. Killingtveit, Å., 2019. Hydropower. In: Managing Global Warming. Elsevier, pp 265–315.
  3. Denisov, S.E., and Denisova, M.V., 2017. Analysis of Hydropower Potential and the Prospects of Developing Hydropower Engineering in South Ural of the Russian Federation. Procedia Engineering, 206, pp.881–885. Doi: 10.1016/j.proeng.2017.10.567
  4. International Hydropower Association, 2020. Hydropower Status Report 2020: Sector trends and insights.
  5. Ritchie, H., Roser, M., and Rosado, P., 2022. Energy Published online at OurWorldInData.org. Retrieved from: “https://ourworldindata.org/energy” [Online Resource].
  6. British Petroleum P.L.C, 2020. Statistical Review of World Energy 2020. Globally Consistent Data on World Energy Markets.
  7. Naranjo-Silva, S., Punina-Guerrero, D., Barros-Enrique, J.D. z, Almeida-Dominguez, J.A., and Castillo, J.A. del, 2022. A physical-chemical study of water resources in 5 hydropower projects. Brazilian Journal of Development, 8(11), pp.73168–73185. Doi: 10.34117/bjdv8n11-158
  8. Naranjo-Silva, S., and Álvarez del Castillo, J., 2021. Hydropower: Projections in a changing climate and impacts by this “clean” source. CienciAmérica, 10(2), pp.32–45. Doi: 10.33210/ca.v10i2.363
  9. Bakken, T.H., Killingtveit, Å., Engeland, K., Alfredsen, K., and Harby, A., 2013. Water consumption from hydropower plants – review of published estimates and an assessment of the concept. Hydrology and Earth System Sciences, 17(10), pp.3983–4000. Doi: 10.5194/hess-17-3983-2013
  10. The International Journal on Hydropower, 2015. World Atlas and Industry Guide 2015. Wallington.
  11. International Hydropower Association, 2021. Hydropower Status Report 2021: Sector Trends and Insights.
  12. Kent, R., 2018. Renewables. Plastics Engineering, 74(9), pp.56–57. Doi: 10.1002/peng.20026
  13. Ponce-Jara, M.A., Castro, M., Pelaez-Samaniego, M.R., Espinoza-Abad, J.L., and Ruiz, E., 2018. Electricity sector in Ecuador: An overview of the 2007–2017 decade. Energy Policy, 113, pp.513–522. Doi: 10.1016/j.enpol.2017.11.036
  14. Briones-Hidrovo, A., Uche, J., and Martínez-Gracia, A., 2020. Determining the net environmental performance of hydropower: A new methodological approach by combining life cycle and ecosystem services assessment. Science of The Total Environment, 712, pp.136369. Doi: 10.1016/j.scitotenv.2019.136369
  15. Silva, S.N., and Castillo, J.Á. del, 2021. An Approach of the Hydropower: Advantages and Impacts. A Review. Journal of Energy Research and Reviews, , pp.10–20. Doi: 10.9734/jenrr/2021/v8i130201
  16. Chiang, J.-L., Yang, H.-C., Chen, Y.-R., and Lee, M.-H., 2013. Potential Impact of Climate Change on Hydropower Generation in Southern Taiwan. Energy Procedia, 40, pp.34–37. Doi: 10.1016/j.egypro.2013.08.005
  17. Shaktawat, A., and Vadhera, S., 2021. Risk management of hydropower projects for sustainable development: a review. Environment, Development and Sustainability, 23(1), pp.45–76. Doi: 10.1007/s10668-020-00607-2
  18. Naranjo-Silva, S., Punina Guerrero, D.J., and Álvarez del Castillo, J., 2022. Costo comparativo por kilovatio de los últimos proyectos hidroeléctricos en Ecuador. Revista InGenio, 5(1), pp.22–34. Doi: 10.18779/ingenio.v5i1.473
  19. Regional Energy Integration Commission of South America, 2021. Energy publications of South America. https://www.cier.org/es-uy/Paginas/Publicaciones.aspx
  20. Mapchart, 2021. The world map. In: Didacticworld map. https://mapchart.net/world-advanced.html. Accessed 16 Apr 2021.
  21. The World Bank, 2021. GDP per capita (current US$). https://data.worldbank.org/indicator/NY.GDP.PCAP.CD?end=2020&locations=BR-EC-CO&start=2000&view=chart
  22. The World Bank, 2021. Population estimates and projections. https://databank.worldbank.org/source/population-estimates-and-projections
  23. Jakob, M., Soria, R., Trinidad, C., Edenhofer, O., Bak, C., Bouille, D., Buira, D., Carlino, H., Gutman, V., Hübner, C., Knopf, B., Lucena, A., Santos, L., Scott, A., Steckel, J.C., Tanaka, K., Vogt-Schilb, A., and Yamada, K., 2019. Green fiscal reform for a just energy transition in Latin America. Economics, 13(1), pp.1–11. Doi: 10.5018/economics-ejournal.ja.2019-17
  24. International Hydropower Association, 2020. Hydropower Status Report 2020. International Hydropower Association 1–83.
  25. Bartle, A., 2002. Hydropower potential and development activities. Energy policy, 30(14), pp.1231–1239. Doi: 10.1016/s0140-6701(03)83046-1
  26. EPE, 2017. Statistics of the Energy Market. https://www.epe.gov.br/en/areas-of-expertise/statistics/statistics-of-the-energy-market. Accessed 5 Dec 2019.
  27. International Energy Agency, 2010. Comparative study on rural electrification policies in emerging economies: Keys to successful policies. Paris.
  28. International Hydropower Association, 2019. Hydropower Status Report 2019: Sector trends and insights.
  29. de Queiroz, A.R., Faria, V.A.D., Lima, L.M.M., and Lima, J.W.M., 2019. Hydropower revenues under the threat of climate change in Brazil. Renewable Energy, 133, pp.873–882. Doi: 10.1016/j.renene.2018.10.050
  30. de Faria, F.A.M., and Jaramillo, P., 2017. The future of power generation in Brazil: An analysis of alternatives to Amazonian hydropower development. Energy for Sustainable Development, 41, pp.24–35. Doi: 10.1016/j.esd.2017.08.001
  31. de Faria, F.A.M., Davis, A., Severnini, E., and Jaramillo, P., 2017. The local socio-economic impacts of large hydropower plant development in a developing country. Energy Economics, 67, pp.533–544. Doi: 10.1016/j.eneco.2017.08.025
  32. Lucena, A.F.P., Hejazi, M., Vasquez-Arroyo, E., Turner, S., Köberle, A.C., Daenzer, K., Rochedo, P.R.R., Kober, T., Cai, Y., Beach, R.H., Gernaat, D., van Vuuren, D.P., and van der Zwaan, B., 2018. Interactions between climate change mitigation and adaptation: The case of hydropower in Brazil. Energy, 164, pp.1161–1177. Doi: 10.1016/j.energy.2018.09.005
  33. Calderón, S., Alvarez, A.C., Loboguerrero, A.M., Arango, S., Calvin, K., Kober, T., Daenzer, K., and Fisher-Vanden, K., 2016. Achieving CO2 reductions in Colombia: Effects of carbon taxes and abatement targets. Energy Economics, 56, pp.575–586. Doi: 10.1016/j.eneco.2015.05.010
  34. Greenteach, 2020. Energía hidráulica y energía hidroeléctrica. https://www.greenteach.es/energia-hidraulica-hidroelectrica/. Accessed 31 Mar 2020.
  35. IRENA, 2020. Renewable Energy Statistics 2020. Renewable hydropower (including mixed plants).
  36. Arango-Aramburo, S., Turner, S.W.D., Daenzer, K., Ríos-Ocampo, J.P., Hejazi, M.I., Kober, T., Álvarez-Espinosa, A.C., Romero-Otalora, G.D., and van der Zwaan, B., 2019. Climate impacts on hydropower in Colombia: A multi-model assessment of power sector adaptation pathways. Energy Policy, 128, pp.179–188. Doi: 10.1016/j.enpol.2018.12.057
  37. Guerra, O.J., Tejada, D.A., and Reklaitis, G. V., 2019. Climate change impacts and adaptation strategies for a hydro-dominated power system via stochastic optimization. Applied Energy, 233–234, pp.584–598. Doi: 10.1016/j.apenergy.2018.10.045
  38. Mejía Gaviria, K.D., 2018. Social impacts and the optimal size of hydroelectric megaprojects [In Spanish].
  39. Ministry of Energy and Non-Renewable Resources, 2018. National Energy Efficiency Plan. In: 2018. https://www.celec.gob.ec/hidroagoyan/images/PLANEE_INGLES/NationalEnergyEfficiencyPlan20162035_2017-09-01_16-00-26.html
  40. Parra, R., 2020. Contribution of Non-renewable Sources for Limiting the Electrical CO2 emission factor in Ecuador. WIT Transactions on Ecology and the Environment, 244, pp.65–77.
  41. Carvajal, P.E., Li, F.G.N., Soria, R., Cronin, J., Anandarajah, G., and Mulugetta, Y., 2019. Large hydropower, decarbonisation and climate change uncertainty: Modelling power sector pathways for Ecuador. Energy Strategy Reviews, 23, pp.86–99. Doi: 10.1016/j.esr.2018.12.008
  42. Carvajal, P.E., Anandarajah, G., Mulugetta, Y., and Dessens, O., 2017. Assessing uncertainty of climate change impacts on long-term hydropower generation using the CMIP5 ensemble—the case of Ecuador. Climatic Change, 144(4), pp.611–624. Doi: 10.1007/s10584-017-2055-4
  43. Escribano, G., 2013. Ecuador’s energy policy mix: Development versus conservation and nationalism with Chinese loans. Energy Policy, 57, pp.152–159. Doi: 10.1016/j.enpol.2013.01.022
  44. Purcell, T.F., and Martinez, E., 2018. Post-neoliberal energy modernity and the political economy of the landlord state in Ecuador. Energy Research & Social Science, 41, pp.12–21. Doi: 10.1016/j.erss.2018.04.003
  45. Reyes, P., Procel, S., Sevilla, J., Cabero, A., Orozco, A., Córdova, J., Lima, F., and Vasconez, F., 2021. Exceptionally uncommon overburden collapse behind a natural lava dam: Abandonment of the San-Rafael Waterfall in northeastern Ecuador. Journal of South American Earth Sciences, 110, pp.103353. Doi: 10.1016/j.jsames.2021.103353
  46. Coelho, C.D., da Silva, D.D., Sediyama, G.C., Moreira, M.C., Pereira, S.B., and Lana, Â.M.Q., 2017. Comparison of the water footprint of two hydropower plants in the Tocantins River Basin of Brazil. Journal of Cleaner Production, 153, pp.164–175. Doi: 10.1016/j.jclepro.2017.03.088
  47. Mayer, A., Castro-Diaz, L., Lopez, M.C., Leturcq, G., and Moran, E.F., 2021. Is hydropower worth it? Exploring amazonian resettlement, human development and environmental costs with the Belo Monte project in Brazil. Energy Research & Social Science, 78, pp.102129. Doi: 10.1016/j.erss.2021.102129
  48. Tan-Mullins, M., Urban, F., and Mang, G., 2017. Evaluating the Behaviour of Chinese Stakeholders Engaged in Large Hydropower Projects in Asia and Africa. The China Quarterly, 230, pp.464–488. Doi: 10.1017/S0305741016001041
  49. Briones-Hidrovo, A., Uche, J., and Martínez-Gracia, A., 2019. Estimating the hidden ecological costs of hydropower through an ecosystem services balance: A case study from Ecuador. Journal of Cleaner Production, 233, pp.33–42. Doi: 10.1016/j.jclepro.2019.06.068
  50. Naranjo-Silva, S., and Alvarez del Castillo, J., 2022. The american continent hydropower development and the sustainability: a review. International Journal of Engineering Science Technologies, 6(2), pp.66–79. Doi: 10.29121/ijoest.v6.i2.2022.315
  51. Sovacool, B.K., and Walter, G., 2019. Internationalizing the political economy of hydroelectricity: security, development and sustainability in hydropower states. Review of International Political Economy, 26(1), pp.49–79. Doi: 10.1080/09692290.2018.1511449
  52. van der Zwaan, B., Kober, T., Calderon, S., Clarke, L., Daenzer, K., Kitous, A., Labriet, M., Lucena, A.F.P., Octaviano, C., and Di Sbroiavacca, N., 2016. Energy technology roll-out for climate change mitigation: A multi-model study for Latin America. Energy Economics, 56, pp.526–542. Doi: 10.1016/j.eneco.2015.11.019
  53. Kelly, S., 2019. Megawatts mask impacts: Small hydropower and knowledge politics in the Puelwillimapu, Southern Chile. Energy Research & Social Science, 54, pp.224–235. Doi: 10.1016/j.erss.2019.04.014
  54. Kelly-Richards, S., Silber-Coats, N., Crootof, A., Tecklin, D., and Bauer, C., 2017. Governing the transition to renewable energy: A review of impacts and policy issues in the small hydropower boom. Energy Policy, 101, pp.251–264. Doi: 10.1016/j.enpol.2016.11.035
  55. Chilkoti, V., Bolisetti, T., and Balachandar, R., 2017. Climate change impact assessment on hydropower generation using multi-model climate ensemble. Renewable Energy, 109, pp.510–517. Doi: 10.1016/j.renene.2017.02.041
  56. Kao, S.-C., Sale, M.J., Ashfaq, M., Uria Martinez, R., Kaiser, D.P., Wei, Y., and Diffenbaugh, N.S., 2015. Projecting changes in annual hydropower generation using regional runoff data: An assessment of the United States federal hydropower plants. Energy, 80, pp.239–250. Doi: 10.1016/j.energy.2014.11.066
  57. Guterres, A., 2020. Global wake-up call. United Nations https//www un org/en/coronavirus/global-wake-call (accessed Sept 17, 2020).
  58. Turner, S.W.D., Hejazi, M., Kim, S.H., Clarke, L., and Edmonds, J., 2017. Climate impacts on hydropower and consequences for global electricity supply investment needs. Energy, 141, pp.2081–2090. Doi: 10.1016/j.energy.2017.11.089
  59. Naranjo-Silva, S., Rivera-Gonzalez, L., Escobar-Segovia, K., Quimbita-Chiluisa, O., and del Castillo, J.A., 2022. Analysis of Water Characteristics by the Hydropower Use (Up-Stream and Downstream): A Case of Study at Ecuador, Argentina, and Uruguay. Journal of Sustainable Development, 15(4), pp.71. Doi: 10.5539/jsd.v15n4p71
  60. Oranrejawu, R.M., Olatunji, O.W., and Akpan, G.P., 2018. Impacts of Climate Variability on Hydroelectric Power Generation in Shiroro Station, Nigeria. Iranian (Iranica) Journal of Energy & Environment, 9(3), pp.197–203. Doi: 10.5829/IJEE.2018.09.03.07
  61. Belay, A.K., Atenafu, D., Birhan, S., and Tegengn, T., 2020. Techno-economic Feasibility Study of the Gunde Teklehaymanote Micro-hydropower Plant at Tindwat River, Central Gondar, Ethiopia. Iranian (Iranica) Journal of Energy & Environment, 11(2), pp.130–136. Doi: 10.5829/IJEE.2020.11.02.06