Thermodynamic Modeling and Analysis of a Solar and Geothermal-driven Multigeneration System Using TiO2 and SiO2 Nanoparticles

Document Type : Original Article


1 Department of Mechanical Engineering, Engineering Faculty, Urmia University, Urmia, Iran

2 Faculty of Science and Engineering, Anglia Ruskin University, Chelmsford, UK


In this study, renewable energy sources including a high-temperature solar parabolic trough collector and geothermal water integrated with a modified Kalina cycle, a combined ORC-EJR cycle, an electrolyzer, an RO desalination unit, and a domestic water heater. SiO2 and TiO2 nanoparticles dissolved in Therminol VP1 are applied as the working fluid of the solar collector. A comparative analysis of introduced working fluids is performed from energy, exergy as well as cost analysis point of view to evaluate their efficiencies. Solar irradiation, ambient temperature, and collector inlet temperature were the parameters investigated to discover their effects on energy and exergy efficiency, solar collector outlet temperature, hydrogen production rate, and freshwater production rate. The highest generated outlet temperature of the solar collector outlet was 693.8 K obtained by Therminol VP1/SiO2 nanofluid. The maximum energy and exergy efficiencies of the proposed system were 36.69 % and 17.76 %, respectively. Moreover, it is found that by increasing the solar collector inlet temperature, the hydrogen production rate decreases while the water production rate increases.


Main Subjects

  1. Martins, F., Felgueiras, C. and Smitková, M., 2018. Fossil fuel energy consumption in European countries, Energy Procedia, 153, pp. 107-111. Doi:10.1016/j.egypro.2018.10.050
  2. Khorram, B., Mirzaee, I. and Jafarmadar, S., 2022. Thermoeconomic Analysis of Solar Chimney and Wind Turbine Application to Help Generate Electricity in a Trigeneration Cycle, Iranian (Iranica) Journal of Energy & Environment, 13(3), pp. 220-230. Doi:10.5829/ijee.2022.13.03.02
  3. Aghagolzade, R., Jahanian, O. and Alizadeh Kharkeshi, B., 2022. Investigating a Combined cooling, heating and power system from energy and exergy point of view with RK-215 ICE engine as a prime mover, Iranian (Iranica) Journal of Energy & Environment. Doi:10.5829/IJEE.2023.14.01.09
  4. Taheri, M., Mosaffa, A. and Farshi, L. G., 2017. Energy, exergy and economic assessments of a novel integrated biomass based multigeneration energy system with hydrogen production and LNG regasification cycle, Energy, 125, pp. 162-177. Doi:10.1016/
  5. Al-Ali, M. and Dincer, I., 2014. Energetic and exergetic studies of a multigenerational solar–geothermal system, Applied Thermal Engineering, 71(1), pp. 16-23. Doi:10.1016/j.applthermaleng.2014.06.033
  6. Waseem, S., Ratlamwala, T. A. H., Salman, Y. and Bham, A. A., 2020. Geothermal and solar based mutligenerational system: a comparative analysis, International Journal of Hydrogen Energy, 45(9), pp. 5636-5652. Doi:10.1016/j.ijhydene.2019.06.135
  7. Li, T., Qin, H., Wang, J., Gao, X., Meng, N., Jia, Y. and Liu, Q., 2021. Energetic and exergetic performance of a novel polygeneration energy system driven by geothermal energy and solar energy for power, hydrogen and domestic hot water, Renewable Energy, 175, pp. 318-336. Doi:10.1016/j.renene.2021.04.062
  8. Olia, H., Torabi, M., Bahiraei, M., Ahmadi, M. H., Goodarzi, M. and Safaei, M. R., 2019. Application of nanofluids in thermal performance enhancement of parabolic trough solar collector: state-of-the-art, Applied Sciences, 9(3), pp. 463. Doi:10.3390/app9030463
  9. Li, Y., Tung, S., Schneider, E. and Xi, S., 2009. A review on development of nanofluid preparation and characterization, Powder Technology, 196(2), pp. 89-101. Doi:10.1016/j.powtec.2009.07.025
  10. Toghyani, S., Afshari, E., Baniasadi, E. and Shadloo, M., 2019. Energy and exergy analyses of a nanofluid based solar cooling and hydrogen production combined system, Renewable Energy, 141, pp. 1013-1025. Doi:10.1016/j.renene.2019.04.073
  11. Ratlamwala, T. A. H., Waseem, S., Salman, Y. and Bham, A. A., 2019. Geothermal and solar energy–based multigeneration system for a district, International Journal of Energy Research, 43(10), pp. 5230-5251. Doi:10.1002/er.4480
  12. Bellos, E., Tzivanidis, C. and Said, Z., 2020. A systematic parametric thermal analysis of nanofluid-based parabolic trough solar collectors, Sustainable Energy Technologies and Assessments, 39, pp. 100714. Doi:10.1016/j.seta.2020.100714
  13. Ghasemi, S. E. and Ranjbar, A. A., 2016. Thermal performance analysis of solar parabolic trough collector using nanofluid as working fluid: a CFD modelling study, Journal of Molecular Liquids, 222, pp. 159-166. Doi:10.1016/j.molliq.2016.06.091
  14. Ibrahim, A. and Kayfeci, M., 2021. Comparative analysis of a solar trigeneration system based on parabolic trough collectors using graphene and ferrofluid nanoparticles, Thermal Science, 25(4 Part A), pp. 2549-2563. Doi:10.2298/TSCI191103164I
  15. Alashkar, A. and Gadalla, M., 2017. Thermo-economic analysis of an integrated solar power generation system using nanofluids, Applied Energy, 191, pp. 469-491. Doi:10.1016/j.apenergy.2017.01.084
  16. Mwesigye, A., Huan, Z. and Meyer, J. P., 2015. Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oil–Al2O3 nanofluid, Applied Energy, 156, pp. 398-412. Doi:10.1016/j.apenergy.2015.07.035
  17. Khan, M. S., Amber, K. P., Ali, H. M., Abid, M., Ratlamwala, T. A. and Javed, S., 2020. Performance analysis of solar assisted multigenerational system using therminol VP1 based nanofluids: a comparative study, Thermal Science, 24(2 Part A), pp. 865-878. Doi:10.2298/TSCI180608062K
  18. Kalbande, V. P., Walke, P. V. and Rambhad, K., 2021. Performance of oil‐based thermal storage system with parabolic trough solar collector using Al2O3 and soybean oil nanofluid, International Journal of Energy Research, 45(10), pp. 15338-15359. Doi:10.1002/er.6808
  19. Tonekaboni, N., Salarian, H., Nimvari, M. E. and Khaleghinia, J., 2021. Energy and exergy analysis of an enhanced solar CCHP system with a collector embedded by porous media and nano fluid, Journal of Thermal Engineering, 7(6), pp. 1489-1505. Doi:10.18186/thermal.990897
  20. Said, Z., Ghodbane, M., Boumeddane, B., Tiwari, A. K., Sundar, L. S., Li, C., Aslfattahi, N. and Bellos, E., 2022. Energy, exergy, economic and environmental (4E) analysis of a parabolic trough solar collector using MXene based silicone oil nanofluids, Solar Energy Materials and Solar Cells, 239, pp. 111633. Doi:10.1016/j.solmat.2022.111633
  21. Klein, S. A. and Alvarado, F., 2002. Engineering equation solver, F-Chart Software, Madison, WI, 1.
  22. Musharavati, F., Khanmohammadi, S. and Pakseresht, A., 2021. A novel multi-generation energy system based on geothermal energy source: Thermo-economic evaluation and optimization, Energy Conversion and Management, 230, pp. 113829. Doi:10.1016/j.enconman.2021.113829
  23. Loni, R. a., Asli-Ardeh, E. A., Ghobadian, B., Kasaeian, A. and Gorjian, S., 2017. Thermodynamic analysis of a solar dish receiver using different nanofluids, Energy, 133, pp. 749-760. Doi:10.1016/
  24. Khan, M. S., Abid, M., Ali, H. M., Amber, K. P., Bashir, M. A. and Javed, S., 2019. Comparative performance assessment of solar dish assisted s-CO2 Brayton cycle using nanofluids, Applied Thermal Engineering, 148, pp. 295-306. Doi:10.1016/j.applthermaleng.2018.11.021
  25. Al-Hamed, K. and Dincer, I., 2019. Investigation of a concentrated solar-geothermal integrated system with a combined ejector-absorption refrigeration cycle for a small community, International Journal of Refrigeration, 106, pp. 407-426. Doi:10.1016/j.ijrefrig.2019.06.026
  26. Alirahmi, S. M., Rostami, M. and Farajollahi, A. H., 2020. Multi-criteria design optimization and thermodynamic analysis of a novel multi-generation energy system for hydrogen, cooling, heating, power, and freshwater, International Journal of Hydrogen Energy, 45(30), pp. 15047-15062. Doi:10.1016/j.ijhydene.2020.03.235
  27. Al-Sulaiman, F. A., 2014. Exergy analysis of parabolic trough solar collectors integrated with combined steam and organic Rankine cycles, Energy Conversion and Management, 77, pp. 441-449. Doi:10.1016/j.enconman.2013.10.013
  28. Alirahmi, S. M., Dabbagh, S. R., Ahmadi, P. and Wongwises, S., 2020. Multi-objective design optimization of a multi-generation energy system based on geothermal and solar energy, Energy Conversion and Management, 205, pp. 112426. Doi:10.1016/j.enconman.2019.112426
  29. Yüksel, Y. E., 2018. Thermodynamic assessment of modified Organic Rankine Cycle integrated with parabolic trough collector for hydrogen production, International Journal of Hydrogen Energy, 43(11), pp. 5832-5841. Doi:10.1016/j.ijhydene.2017.09.164
  30. Sarabchi, N., Mahmoudi, S. S., Yari, M. and Farzi, A., 2019. Exergoeconomic analysis and optimization of a novel hybrid cogeneration system: High-temperature proton exchange membrane fuel cell/Kalina cycle, driven by solar energy, Energy Conversion and Management, 190, pp. 14-33. Doi:10.1016/j.enconman.2019.03.037
  31. Nafey, A. and Sharaf, M., 2010. Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations, Renewable Energy, 35(11), pp. 2571-2580. Doi:10.1016/j.renene.2010.03.034
  32. Nemati, A., Sadeghi, M. and Yari, M., 2017. Exergoeconomic analysis and multi-objective optimization of a marine engine waste heat driven RO desalination system integrated with an organic Rankine cycle using zeotropic working fluid, Desalination, 422, pp. 113-123. Doi:10.1016/j.desal.2017.08.012
  33. Aliahmadi, M., Moosavi, A. and Sadrhosseini, H., 2021. Multi-objective optimization of regenerative ORC system integrated with thermoelectric generators for low-temperature waste heat recovery, Energy Reports, 7, pp. 300-313. Doi:10.1016/j.egyr.2020.12.035
  34. Habibzadeh, A., Rashidi, M. and Galanis, N., 2013. Analysis of a combined power and ejector-refrigeration cycle using low temperature heat, Energy Conversion and Management, 65, pp. 381-391. Doi:10.1016/j.enconman.2012.08.020
  35. Rostamnejad Takleh, H. and Zare, V., 2021. Proposal and thermoeconomic evaluation with reliability considerations of geothermal driven trigeneration systems with independent operations for summer and winter, International Journal of Refrigeration, 127, pp. 34-46. Doi:10.1016/j.ijrefrig.2020.12.033
  36. Kalogirou, S. A., 2013. Solar energy engineering: processes and systems. Academic press. 0123972566:0123972566.
  37. Abdolalipouradl, M., Khalilarya, S. and Jafarmadar, S., 2019. Energy and exergy analysis of a new power, heating, oxygen and hydrogen cogeneration cycle based on the sabalan geothermal wells, International Journal of Engineering, Transactions C: Aspects, 32(3), pp. 445-450. Doi:10.5829/ije.2019.32.03c.13
  38. Xi, Z., Eshaghi, S. and Sardari, F., 2021. Energy, exergy, and exergoeconomic analysis of a polygeneration system driven by solar energy with a thermal energy storage tank for power, heating, and freshwater production, Journal of Energy Storage, 36, pp. 102429. Doi:10.1016/j.est.2021.102429
  39. Szargut, J., 2005. Exergy method: technical and ecological applications. WIT Press. ISBN: 1853127531.
  40. Assareh, E., Alirahmi, S. M. and Ahmadi, P., 2021. A Sustainable model for the integration of solar and geothermal energy boosted with thermoelectric generators (TEGs) for electricity, cooling and desalination purpose, Geothermics, 92, pp. 102042. Doi:10.1016/j.geothermics.2021.102042
  41. Akrami, E., Chitsaz, A., Nami, H. and Mahmoudi, S., 2017. Energetic and exergoeconomic assessment of a multi-generation energy system based on indirect use of geothermal energy, Energy, 124, pp. 625-639. Doi:10.1016/
  42. Ahmadi, P., Dincer, I. and Rosen, M. A., 2014. Multi-objective optimization of a novel solar-based multigeneration energy system, Solar Energy, 108, pp. 576-591. Doi:10.1016/j.solener.2014.07.022
  43. Yu, Z., Su, R. and Feng, C., 2020. Thermodynamic analysis and multi-objective optimization of a novel power generation system driven by geothermal energy, Energy, 199, pp. 117381. Doi:10.1016/