In this study, renewable energy sources including a high-temperature solar parabolic trough collector and geothermal water integrated with a modified Kalina cycle, a combined ORC-EJR cycle, an electrolyzer, an RO desalination unit, and a domestic water heater. SiO2 and TiO2 nanoparticles dissolved in Therminol VP1 are applied as the working fluid of the solar collector. A comparative analysis of introduced working fluids is performed from energy, exergy as well as cost analysis point of view to evaluate their efficiencies. Solar irradiation, ambient temperature, and collector inlet temperature were the parameters investigated to discover their effects on energy and exergy efficiency, solar collector outlet temperature, hydrogen production rate, and freshwater production rate. The highest generated outlet temperature of the solar collector outlet was 693.8 K obtained by Therminol VP1/SiO2 nanofluid. The maximum energy and exergy efficiencies of the proposed system were 36.69 % and 17.76 %, respectively. Moreover, it is found that by increasing the solar collector inlet temperature, the hydrogen production rate decreases while the water production rate increases.
Martins, F., Felgueiras, C. and Smitková, M., 2018. Fossil fuel energy consumption in European countries, Energy Procedia, 153, pp. 107-111. Doi:10.1016/j.egypro.2018.10.050
Khorram, B., Mirzaee, I. and Jafarmadar, S., 2022. Thermoeconomic Analysis of Solar Chimney and Wind Turbine Application to Help Generate Electricity in a Trigeneration Cycle, Iranian (Iranica) Journal of Energy & Environment, 13(3), pp. 220-230. Doi:10.5829/ijee.2022.13.03.02
Aghagolzade, R., Jahanian, O. and Alizadeh Kharkeshi, B., 2022. Investigating a Combined cooling, heating and power system from energy and exergy point of view with RK-215 ICE engine as a prime mover, Iranian (Iranica) Journal of Energy & Environment. Doi:10.5829/IJEE.2023.14.01.09
Taheri, M., Mosaffa, A. and Farshi, L. G., 2017. Energy, exergy and economic assessments of a novel integrated biomass based multigeneration energy system with hydrogen production and LNG regasification cycle, Energy, 125, pp. 162-177. Doi:10.1016/j.energy.2017.02.124
Al-Ali, M. and Dincer, I., 2014. Energetic and exergetic studies of a multigenerational solar–geothermal system, Applied Thermal Engineering, 71(1), pp. 16-23. Doi:10.1016/j.applthermaleng.2014.06.033
Waseem, S., Ratlamwala, T. A. H., Salman, Y. and Bham, A. A., 2020. Geothermal and solar based mutligenerational system: a comparative analysis, International Journal of Hydrogen Energy, 45(9), pp. 5636-5652. Doi:10.1016/j.ijhydene.2019.06.135
Li, T., Qin, H., Wang, J., Gao, X., Meng, N., Jia, Y. and Liu, Q., 2021. Energetic and exergetic performance of a novel polygeneration energy system driven by geothermal energy and solar energy for power, hydrogen and domestic hot water, Renewable Energy, 175, pp. 318-336. Doi:10.1016/j.renene.2021.04.062
Olia, H., Torabi, M., Bahiraei, M., Ahmadi, M. H., Goodarzi, M. and Safaei, M. R., 2019. Application of nanofluids in thermal performance enhancement of parabolic trough solar collector: state-of-the-art, Applied Sciences, 9(3), pp. 463. Doi:10.3390/app9030463
Li, Y., Tung, S., Schneider, E. and Xi, S., 2009. A review on development of nanofluid preparation and characterization, Powder Technology, 196(2), pp. 89-101. Doi:10.1016/j.powtec.2009.07.025
Toghyani, S., Afshari, E., Baniasadi, E. and Shadloo, M., 2019. Energy and exergy analyses of a nanofluid based solar cooling and hydrogen production combined system, Renewable Energy, 141, pp. 1013-1025. Doi:10.1016/j.renene.2019.04.073
Ratlamwala, T. A. H., Waseem, S., Salman, Y. and Bham, A. A., 2019. Geothermal and solar energy–based multigeneration system for a district, International Journal of Energy Research, 43(10), pp. 5230-5251. Doi:10.1002/er.4480
Bellos, E., Tzivanidis, C. and Said, Z., 2020. A systematic parametric thermal analysis of nanofluid-based parabolic trough solar collectors, Sustainable Energy Technologies and Assessments, 39, pp. 100714. Doi:10.1016/j.seta.2020.100714
Ghasemi, S. E. and Ranjbar, A. A., 2016. Thermal performance analysis of solar parabolic trough collector using nanofluid as working fluid: a CFD modelling study, Journal of Molecular Liquids, 222, pp. 159-166. Doi:10.1016/j.molliq.2016.06.091
Ibrahim, A. and Kayfeci, M., 2021. Comparative analysis of a solar trigeneration system based on parabolic trough collectors using graphene and ferrofluid nanoparticles, Thermal Science, 25(4 Part A), pp. 2549-2563. Doi:10.2298/TSCI191103164I
Alashkar, A. and Gadalla, M., 2017. Thermo-economic analysis of an integrated solar power generation system using nanofluids, Applied Energy, 191, pp. 469-491. Doi:10.1016/j.apenergy.2017.01.084
Mwesigye, A., Huan, Z. and Meyer, J. P., 2015. Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oil–Al2O3 nanofluid, Applied Energy, 156, pp. 398-412. Doi:10.1016/j.apenergy.2015.07.035
Khan, M. S., Amber, K. P., Ali, H. M., Abid, M., Ratlamwala, T. A. and Javed, S., 2020. Performance analysis of solar assisted multigenerational system using therminol VP1 based nanofluids: a comparative study, Thermal Science, 24(2 Part A), pp. 865-878. Doi:10.2298/TSCI180608062K
Kalbande, V. P., Walke, P. V. and Rambhad, K., 2021. Performance of oil‐based thermal storage system with parabolic trough solar collector using Al2O3 and soybean oil nanofluid, International Journal of Energy Research, 45(10), pp. 15338-15359. Doi:10.1002/er.6808
Tonekaboni, N., Salarian, H., Nimvari, M. E. and Khaleghinia, J., 2021. Energy and exergy analysis of an enhanced solar CCHP system with a collector embedded by porous media and nano fluid, Journal of Thermal Engineering, 7(6), pp. 1489-1505. Doi:10.18186/thermal.990897
Said, Z., Ghodbane, M., Boumeddane, B., Tiwari, A. K., Sundar, L. S., Li, C., Aslfattahi, N. and Bellos, E., 2022. Energy, exergy, economic and environmental (4E) analysis of a parabolic trough solar collector using MXene based silicone oil nanofluids, Solar Energy Materials and Solar Cells, 239, pp. 111633. Doi:10.1016/j.solmat.2022.111633
Klein, S. A. and Alvarado, F., 2002. Engineering equation solver, F-Chart Software, Madison, WI, 1.
Musharavati, F., Khanmohammadi, S. and Pakseresht, A., 2021. A novel multi-generation energy system based on geothermal energy source: Thermo-economic evaluation and optimization, Energy Conversion and Management, 230, pp. 113829. Doi:10.1016/j.enconman.2021.113829
Loni, R. a., Asli-Ardeh, E. A., Ghobadian, B., Kasaeian, A. and Gorjian, S., 2017. Thermodynamic analysis of a solar dish receiver using different nanofluids, Energy, 133, pp. 749-760. Doi:10.1016/j.energy.2017.05.016
Khan, M. S., Abid, M., Ali, H. M., Amber, K. P., Bashir, M. A. and Javed, S., 2019. Comparative performance assessment of solar dish assisted s-CO2 Brayton cycle using nanofluids, Applied Thermal Engineering, 148, pp. 295-306. Doi:10.1016/j.applthermaleng.2018.11.021
Al-Hamed, K. and Dincer, I., 2019. Investigation of a concentrated solar-geothermal integrated system with a combined ejector-absorption refrigeration cycle for a small community, International Journal of Refrigeration, 106, pp. 407-426. Doi:10.1016/j.ijrefrig.2019.06.026
Alirahmi, S. M., Rostami, M. and Farajollahi, A. H., 2020. Multi-criteria design optimization and thermodynamic analysis of a novel multi-generation energy system for hydrogen, cooling, heating, power, and freshwater, International Journal of Hydrogen Energy, 45(30), pp. 15047-15062. Doi:10.1016/j.ijhydene.2020.03.235
Al-Sulaiman, F. A., 2014. Exergy analysis of parabolic trough solar collectors integrated with combined steam and organic Rankine cycles, Energy Conversion and Management, 77, pp. 441-449. Doi:10.1016/j.enconman.2013.10.013
Alirahmi, S. M., Dabbagh, S. R., Ahmadi, P. and Wongwises, S., 2020. Multi-objective design optimization of a multi-generation energy system based on geothermal and solar energy, Energy Conversion and Management, 205, pp. 112426. Doi:10.1016/j.enconman.2019.112426
Yüksel, Y. E., 2018. Thermodynamic assessment of modified Organic Rankine Cycle integrated with parabolic trough collector for hydrogen production, International Journal of Hydrogen Energy, 43(11), pp. 5832-5841. Doi:10.1016/j.ijhydene.2017.09.164
Sarabchi, N., Mahmoudi, S. S., Yari, M. and Farzi, A., 2019. Exergoeconomic analysis and optimization of a novel hybrid cogeneration system: High-temperature proton exchange membrane fuel cell/Kalina cycle, driven by solar energy, Energy Conversion and Management, 190, pp. 14-33. Doi:10.1016/j.enconman.2019.03.037
Nafey, A. and Sharaf, M., 2010. Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations, Renewable Energy, 35(11), pp. 2571-2580. Doi:10.1016/j.renene.2010.03.034
Nemati, A., Sadeghi, M. and Yari, M., 2017. Exergoeconomic analysis and multi-objective optimization of a marine engine waste heat driven RO desalination system integrated with an organic Rankine cycle using zeotropic working fluid, Desalination, 422, pp. 113-123. Doi:10.1016/j.desal.2017.08.012
Aliahmadi, M., Moosavi, A. and Sadrhosseini, H., 2021. Multi-objective optimization of regenerative ORC system integrated with thermoelectric generators for low-temperature waste heat recovery, Energy Reports, 7, pp. 300-313. Doi:10.1016/j.egyr.2020.12.035
Habibzadeh, A., Rashidi, M. and Galanis, N., 2013. Analysis of a combined power and ejector-refrigeration cycle using low temperature heat, Energy Conversion and Management, 65, pp. 381-391. Doi:10.1016/j.enconman.2012.08.020
Rostamnejad Takleh, H. and Zare, V., 2021. Proposal and thermoeconomic evaluation with reliability considerations of geothermal driven trigeneration systems with independent operations for summer and winter, International Journal of Refrigeration, 127, pp. 34-46. Doi:10.1016/j.ijrefrig.2020.12.033
Kalogirou, S. A., 2013. Solar energy engineering: processes and systems. Academic press. 0123972566:0123972566.
Abdolalipouradl, M., Khalilarya, S. and Jafarmadar, S., 2019. Energy and exergy analysis of a new power, heating, oxygen and hydrogen cogeneration cycle based on the sabalan geothermal wells, International Journal of Engineering, Transactions C: Aspects, 32(3), pp. 445-450. Doi:10.5829/ije.2019.32.03c.13
Xi, Z., Eshaghi, S. and Sardari, F., 2021. Energy, exergy, and exergoeconomic analysis of a polygeneration system driven by solar energy with a thermal energy storage tank for power, heating, and freshwater production, Journal of Energy Storage, 36, pp. 102429. Doi:10.1016/j.est.2021.102429
Assareh, E., Alirahmi, S. M. and Ahmadi, P., 2021. A Sustainable model for the integration of solar and geothermal energy boosted with thermoelectric generators (TEGs) for electricity, cooling and desalination purpose, Geothermics, 92, pp. 102042. Doi:10.1016/j.geothermics.2021.102042
Akrami, E., Chitsaz, A., Nami, H. and Mahmoudi, S., 2017. Energetic and exergoeconomic assessment of a multi-generation energy system based on indirect use of geothermal energy, Energy, 124, pp. 625-639. Doi:10.1016/j.energy.2017.02.006
Ahmadi, P., Dincer, I. and Rosen, M. A., 2014. Multi-objective optimization of a novel solar-based multigeneration energy system, Solar Energy, 108, pp. 576-591. Doi:10.1016/j.solener.2014.07.022
Yu, Z., Su, R. and Feng, C., 2020. Thermodynamic analysis and multi-objective optimization of a novel power generation system driven by geothermal energy, Energy, 199, pp. 117381. Doi:10.1016/j.energy.2020.117381
Habibzadeh, A., Abbasalizadeh, M., Mirzaee, I., Jafarmadar, S., & Shirvani, H. (2023). Thermodynamic Modeling and Analysis of a Solar and Geothermal-driven Multigeneration System Using TiO2 and SiO2 Nanoparticles. Iranian (Iranica) Journal of Energy & Environment, 14(2), 127-138. doi: 10.5829/ijee.2023.14.02.05
MLA
A. Habibzadeh; M. Abbasalizadeh; I. Mirzaee; S. Jafarmadar; H. Shirvani. "Thermodynamic Modeling and Analysis of a Solar and Geothermal-driven Multigeneration System Using TiO2 and SiO2 Nanoparticles". Iranian (Iranica) Journal of Energy & Environment, 14, 2, 2023, 127-138. doi: 10.5829/ijee.2023.14.02.05
HARVARD
Habibzadeh, A., Abbasalizadeh, M., Mirzaee, I., Jafarmadar, S., Shirvani, H. (2023). 'Thermodynamic Modeling and Analysis of a Solar and Geothermal-driven Multigeneration System Using TiO2 and SiO2 Nanoparticles', Iranian (Iranica) Journal of Energy & Environment, 14(2), pp. 127-138. doi: 10.5829/ijee.2023.14.02.05
VANCOUVER
Habibzadeh, A., Abbasalizadeh, M., Mirzaee, I., Jafarmadar, S., Shirvani, H. Thermodynamic Modeling and Analysis of a Solar and Geothermal-driven Multigeneration System Using TiO2 and SiO2 Nanoparticles. Iranian (Iranica) Journal of Energy & Environment, 2023; 14(2): 127-138. doi: 10.5829/ijee.2023.14.02.05