Document Type : Review paper

Authors

Department of Mechanical Engineering, Sri Dhrmasthala Manjunatheshwara Institute of Technology, Ujire, Karnataka, India

Abstract

In solar drying, the moisture content of a product is reduced through the use of sunlight. Solar drying is practiced since civilization for the drying of crops. The dried crop has a longer shelf life and requires less storage space. For crop drying, hot air is required in the moderate temperature range of 40 to 75℃. Solar dryer makes it possible to obtain better product quality. Over the past 20 years, numerous experimental projects have been carried out in the field of solar dryers. Most conventional dryers are not able to operate continuously during the off sunshine time. However, attempts were made to develop uninterrupted solar drying systems by incorporating an energy storage facility and a hybrid mode of operation.  Sensible and latent heat storage methods are widely used to store solar energy. Heat storage materials store energy in the form of heat during sunshine and release it whenever it is required. Biogas backup, Chemical heat pump, Photo Voltaic, and Fluidized bed methods were integrated with solar dryers for uninterrupted operation. In this article, the discussion is made about different dryers. Also, the challenges and scope in the area of the solar dryer are highlighted.                               

Keywords

Main Subjects

  1. The State of Food Security and Nutrition in the World, 2019. Available at: https://www.fao.org/state-of-food-security-nutrition/2021/en/.
  2. 2020 Hunger Report, Better Nutrition, Better Tomorrow, 2020. Available at: https://hungerreport.org/2020/?_ga=2.232297311.1137683131.1614229047-1311601960.1614229047.
  3. Hodges, R. J., Buzby, J. C. and Bennett, B., 2011. Postharvest losses and waste in developed and less developed countries: opportunities to improve resource use, The Journal of Agricultural Science, 149(S1), pp. 37-45. Doi:10.1017/S0021859610000936
  4. El-Sebaii, A. and Shalaby, S., 2012. Solar drying of agricultural products: A review, Renewable and Sustainable Energy Reviews, 16(1), pp. 37-43. Doi:10.1016/j.rser.2011.07.134
  5. Chitra V, R., 2021. With markets closed, farmers are dumping flowers Available at: https://www.thehindu.com/news/cities/bangalore/with-markets-closed-farmers-are-dumping-flowers/article34529644.ece.
  6. The Indian Express, 2021. Karnataka: With lockdowns in many states, large quantities of tomatoes go unsold in Kolar market. Available at: https://indianexpress.com/article/india/tomatoes-go-unsold-in-apmc-market-in-kolar-in-karnataka-7325957/.
  7. Jain, D. and Tiwari, G., 2003. Thermal aspects of open sun drying of various crops, Energy, 28(1), pp. 37-54. Doi:10.1016/S0360-5442(02)00084-1
  8. Ezekoye, B. and Enebe, O., 2006. Development and performance evaluation of modified integrated passive solar grain dryer, The Pacific Journal of Science and Technology, 7(2), pp. 185-190.
  9. Sengar, S., Khandetod, Y. and Mohod, A., 2009. Low cost solar dryer for fish, African Journal of Environmental Science and Technology, 3(9), pp. 265-271.
  10. Lingayat, A. B., Chandramohan, V., Raju, V. and Meda, V., 2020. A review on indirect type solar dryers for agricultural crops–Dryer setup, its performance, energy storage and important highlights, Applied Energy, 258, pp. 114005. Doi:10.1016/j.apenergy.2019.114005
  11. Mohsin, A., Maruf, M. N. I., Sayem, A., Mojumdar and Hossain, M. R. R. and Farhad, M. S., 2011. Prospect & future of solar dryer: perspective Bangladesh, International Journal of Engineering and Technology, 3(2), pp. 165-170.
  12. Puello-Mendez, J., Castellar, P. M., Ocana, L. C., Bossa, L., Sanjuan, E., Lambis-Miranda, H. and Villamizar, L., 2017. Comparative study of solar drying of cocoa beans: Two methods used in Colombian rural areas, Chemical Engineering Transactions, 57, pp. 1711-1716. Doi:10.3303/CET1757286
  13. Sukhatme, S. P. and Nayak, J., 2017. Solar energy. McGraw-Hill Education. ISBN: 9352607120.
  14. Alonge, A. and Hammed, R., 2011.A direct passive solar dryer for tropical crops, African Crop Science Conference Proceedings, African Crop Science Society, pp. 1643-1646.
  15. Singh, M. and Sethi, V., 2018. On the design, modelling and analysis of multi-shelf inclined solar cooker-cum-dryer, Solar Energy, 162, pp. 620-636. Doi:10.1016/j.solener.2018.01.045
  16. Haftom, Z., Tsegay, T. and Tesfay, M., 2017. Evaluation of solar dryers on drying and sensory properties of salted Tilapia filets, Tigray, Northern Ethiopia, ISABB Journal of Food and Agricultural Sciences, 7(2), pp. 10-18. Doi:10.5897/ISABB-JFAS2017.0065
  17. Mohanraj, M. and Chandrasekar, P., 2009. Performance of a forced convection solar drier integrated with gravel as heat storage material for chili drying, Journal of Engineering Science and Technology, 4(3), pp. 305-314. Available at: http://hdl.handle.net/1959.3/72095
  18. Shalaby, S., 2012. Effect of Using Energy Storage Material in an Indirect-mode Forced Convection Solar Dryer on the Drying Characteristics of Grapes, Journal of Medical and Bioengineering, 1(1), pp. 56-58. Doi:10.12720/jomb.1.1.56-58
  19. Bolaji, B. O. and Olalusi, A. P., 2008. Performance evaluation of a mixed-mode solar dryer, AU Journal of Technology, 11(4), pp. 225–231. Available at: http://repository.fuoye.edu.ng/handle/123456789/1221
  20. Maiti, S., Patel, P., Vyas, K., Eswaran, K. and Ghosh, P. K., 2011. Performance evaluation of a small scale indirect solar dryer with static reflectors during non-summer months in the Saurashtra region of western India, Solar Energy, 85(11), pp. 2686-2696. Doi:10.1016/j.solener.2011.08.007
  21. Kadam, D. M. and Samuel, D., 2006. Convective flat-plate solar heat collector for cauliflower drying, Biosystems Engineering, 93(2), pp. 189-198. Doi:10.1016/j.biosystemseng.2005.11.012
  22. Lingayat, A., Chandramohan, V. and Raju, V., 2017. Design, development and performance of indirect type solar dryer for banana drying, Energy Procedia, 109, pp. 409-416. Doi:10.1016/j.egypro.2017.03.041
  23. Pangavhane, D. and Sawhney, R., 2002. Review of research and development work on solar dryers for grape drying, Energy conversion and management, 43(1), pp. 45-61. Doi:10.1016/S0196-8904(01)00006-1
  24. Çakmak, G. and Yıldız, C., 2009. Design of a new solar dryer system with swirling flow for drying seeded grape, International Communications in Heat and Mass Transfer, 36(9), pp. 984-990. Doi:10.1016/j.icheatmasstransfer.2009.06.012
  25. Nabi, H., Pourfallah, M., Gholinia, M. and Jahanian, O., 2022. Increasing heat transfer in flat plate solar collectors using various forms of turbulence-inducing elements and CNTs-CuO hybrid nanofluids, Case Studies in Thermal Engineering, 33, pp. 101909. Doi:10.1016/j.csite.2022.101909
  26. Warke, A., Auti, A., Pangavhane, D. and Ubale, A., 2015. Experimental and theoretical study of thompson seedless grapes drying using solar evacuated tube collector with force convection method, International Journal of Engineering, 28(12), pp. 1796-1801. Doi:10.5829/idosi.ije.2015.28.12c.13
  27. Agarwal, A. and Sarviya, R., 2016. An experimental investigation of shell and tube latent heat storage for solar dryer using paraffin wax as heat storage material, Engineering Science and Technology, an International Journal, 19(1), pp. 619-631. Doi:10.1016/j.jestch.2015.09.014
  28. Bhardwaj, A., Kumar, R. and Chauhan, R., 2019. Experimental investigation of the performance of a novel solar dryer for drying medicinal plants in Western Himalayan region, Solar Energy, 177, pp. 395-407. Doi:10.1016/j.solener.2018.11.007
  29. El Khadraoui, A., Bouadila, S., Kooli, S., Farhat, A. and Guizani, A., 2017. Thermal behavior of indirect solar dryer: Nocturnal usage of solar air collector with PCM, Journal of Cleaner Production, 148, pp. 37-48. Doi:10.1016/j.jclepro.2017.01.149
  30. El-Sebaii, A. and Shalaby, S., 2017. Experimental investigation of drying thymus cut leaves in indirect solar dryer with phase change material, Journal of Solar Energy Engineering, 139(6). pp. 1–8. Doi:10.1115/1.4037816
  31. Jain, D. and Tewari, P., 2015. Performance of indirect through pass natural convective solar crop dryer with phase change thermal energy storage, Renewable energy, 80, pp. 244-250. Doi:10.1016/j.renene.2015.02.012
  32. Raj, A., Srinivas, M. and Jayaraj, S., 2019. A cost-effective method to improve the performance of solar air heaters using discrete macro-encapsulated PCM capsules for drying applications, Applied Thermal Engineering, 146, pp. 910-920. Doi:10.1016/j.applthermaleng.2018.10.055
  33. Reyes, A., Mahn, A. and Vásquez, F., 2014. Mushrooms dehydration in a hybrid-solar dryer, using a phase change material, Energy Conversion and management, 83, pp. 241-248. Doi:10.1016/j.enconman.2014.03.077
  34. Shalaby, S. and Bek, M., 2014. Experimental investigation of a novel indirect solar dryer implementing PCM as energy storage medium, Energy conversion and management, 83, pp. 1-8. Doi:10.1016/j.enconman.2014.03.043
  35. Shalaby, S. and Bek, M., 2015. Drying nerium oleander in an indirect solar dryer using phase change material as an energy storage medium, Journal of Clean Energy Technologies, 3(3), pp. 176-180. Doi:10.7763/JOCET.2015.V3.19
  36. Srivastava, A., Shukla, S. and Mishra, S., 2014. Evaluation of solar dryer/air heater performance and the accuracy of the result, Energy Procedia, 57, pp. 2360-2369. Doi:10.1016/j.egypro.2014.10.244
  37. Vásquez, J., Reyes, A. and Pailahueque, N., 2019. Modeling, simulation and experimental validation of a solar dryer for agro-products with thermal energy storage system, Renewable energy, 139, pp. 1375-1390. Doi:10.1016/j.renene.2019.02.085
  38. Ahmed, A. G., 2011. Performance evaluation of a mixed-mode solar dryer for evaporating moisture in beans, Journal of Agricultural Biotechnology and Sustainable Development, 3(4), pp. 65-71. Doi:10.5897/JABSD.9000033
  39. Ayensu, A. and Asiedu-Bondzie, V., 1986. Solar drying with convective self-flow and energy storage, Solar & Wind Technology, 3(4), pp. 273-279. Doi:10.1016/0741-983X(86)90006-8
  40. Butler, J. and Troeger, J., 1981. Drying peanuts using solar energy stored in a rock bed. St Joseph, Michigan: Solar Energy, ASAE Publication.
  41. Garg, H., Sharma, V., Mahajan, R. and Bhargave, A., 1985. Experimental study of an inexpensive solar collector cum storage system for agricultural uses, Solar Energy, 35(4), pp. 321-331.
  42. Hale, D., Hoover, M. and Oneill, M., 1971. Phase change materials handbook. Alabaa: Marshal Space Flight Center.
  43. Tiwari, G., Singh, A. and Bhatia, P., 1994. Experimental simulation of a grain drying system, Energy Conversion and Management, 35(5), pp. 453-458. Doi:10.1016/0196-8904(94)90103-1
  44. Chauhan, P., Choudhury, C. and Garg, H., 1996. Comparative performance of coriander dryer coupled to solar air heater and solar air-heater-cum-rockbed storage, Applied Thermal Engineering, 16(6), pp. 475-486. Doi:10.1016/1359-4311(95)00038-0
  45. Erick César, L.-V., Ana Lilia, C.-M., Octavio, G.-V., Isaac, P. F. and Rogelio, B. O., 2020. Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum lycopersicum), Renewable Energy, 147, pp. 845-855. Doi:10.1016/j.renene.2019.09.018
  46. Prem Kumar, S. and Prakash, E. S., 2015. Study on Solar Dryer Coupled With FPC, Proceedings of 1st National Conference on Trends and Innovations in Automation, Materials and Thermal Engineering (TIAMTE–2015), pp. 365–375.
  47. Moradian, M. and Zomorodian, A., 2009. Thin Layer Solar Drying of Cyminum Grains by Means of Solar Cabinet Dryer, American–Eurasian Journal of Agricultural & Environmental Science, 5(3), pp. 409-413.
  48. Premkumar, S., Ramanarasimha, K. and Prakash, E. S., 2018. Design and Development of Solar Crop Dryer Integrated with Oil Bath, Iranian (Iranica) Journal of Energy & Environment, 9(4), pp. 277-283. Doi:10.5829/ijee.2018.09.04.08
  49. Jain, D. and Tiwari, G., 2004. Effect of greenhouse on crop drying under natural and forced convection II. Thermal modeling and experimental validation, Energy Conversion and Management, 45(17), pp. 2777-2793. Doi:10.1016/j.enconman.2003.12.011
  50. Li, Y., Li, H., Dai, Y., Gao, S., Wei, L., Li, Z., Odinez, I. and Wang, R., 2011. Experimental investigation on a solar assisted heat pump in-store drying system, Applied Thermal Engineering, 31(10), pp. 1718-1724. Doi:10.1177/0144598718823937
  51. Madhlopa, A. and Ngwalo, G., 2007. Solar dryer with thermal storage and biomass-backup heater, Solar Energy, 81(4), pp. 449-462. Doi:10.1016/j.solener.2006.08.008
  52. Yahya, M., Fahmi, H., Fudholi, A. and Sopian, K., 2018. Performance and economic analyses on solar-assisted heat pump fluidised bed dryer integrated with biomass furnace for rice drying, Solar Energy, 174, pp. 1058-1067. Doi:10.1016/j.solener.2018.10.002
  53. Morad, M., El-Shazly, M., Wasfy, K. and El-Maghawry, H. A., 2017. Thermal analysis and performance evaluation of a solar tunnel greenhouse dryer for drying peppermint plants, Renewable Energy, 101, pp. 992-1004. Doi:10.1016/j.renene.2016.09.042
  54. Sandali, M., Boubekri, A., Mennouche, D. and Gherraf, N., 2019. Improvement of a direct solar dryer performance using a geothermal water heat exchanger as supplementary energetic supply. An experimental investigation and simulation study, Renewable Energy, 135, pp. 186-196. Doi:10.1016/dz.space.2021
  55. Leon, M. A. and Kumar, S., 2008. Design and performance evaluation of a solar-assisted biomass drying system with thermal storage, Drying Technology, 26(7), pp. 936-947. Doi:10.1080/07373930802142812
  56. Tarigan, E. and Tekasakul, P., 2005.A mixed-mode natural convection solar dryer with biomass burner and heat storage back-up heater, Proceedings of the Australia and New Zealand Solar Energy Society Annual Conference, Otago University, Dunedin, New Zealand, 28 – 30 November, pp. 1-9.
  57. Abdul Majid, Z., Othman, M., Ruslan, M. and Sopian, K., 2007.Development of a close loop solar assisted heat pump dryer using multifunctional solar thermal collector, Regional conference on engineering mathematics, mechanics, manufacturing & architecture (EM3ARC), pp. 48-53.
  58. Ibrahim, M., Sopian, K., Daud, W. and Alghoul, M., 2009. An experimental analysis of solar-assisted chemical heat pump dryer, International Journal of Low-Carbon Technologies, 4(2), pp. 78-83. Doi:10.1093/ijlct/ctp016
  59. Janjai, S., Khamvongsa, V. and Bala, B., 2007. Development, design, and performance of a PV-ventilated greenhouse dryer, International Energy Journal, 8(4), pp. 249–258. Available at: http://203.159.5.126/index.php/reric/article/view/336/260
  60. Janjai, S., Lamlert, N., Intawee, P., Mahayothee, B., Bala, B., Nagle, M. and Müller, J., 2009. Experimental and simulated performance of a PV-ventilated solar greenhouse dryer for drying of peeled longan and banana, Solar Energy, 83(9), pp. 1550-1565. Doi:10.1016/j.solener.2009.05.003
  61. Sadodin, S. and Kashani, T., 2011. Numerical investigation of a solar greenhouse tunnel drier for drying of copra, ISESCO Journal of Science and Technology, 7(12), pp. 1-8. Doi:10.48550/arXiv.1102.4522
  62. Visavale, G., 2012. Principles, classification and selection of solar dryers. Solar drying: Fundamentals, Applications and Innovations, Ed. Hii, CL, Ong, SP, Jangam, SV and Mujumdar, AS Singapore. ISBN: 978‐981‐07‐3336‐0
  63. . Solar drying: Fundamentals, Applications and Innovations, Ed. Hii, CL, Ong, SP, Jangam, SV and Mujumdar, AS Singapore. ISBN: 978‐981‐07‐3336‐0.