Bubble Dynamics and Nucleate Pool Boiling of Natural Convection

Document Type : Original Article


1 Department of Mechanical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran

2 Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran


The phenomenon of nuclear boiling has always been recognized suitable for heat transfer between different boiling regimes. Study on boiling is considered as a new field which meets different research and industrial needs such as heat transfer in nuclear reactors, cooling units, rocket motors, electronic equipment cooling, batteries, etc. In this study, a chamber with immiscible fluid, water, steam, and air, having a side wall with uniform heat flux has been studied in 3D. To do so, we first considered the prediction of the heat flux interval for which the boiling occurs in the form of nuclear boiling. In this study, two-phase fluid volume (VOF) approach was used for modelling boiling on the vertical wall and two-phase flow. In this research, Ansys software package was used for numerical modelling and numerical simulation. Distribution of the velocity field follows more uniform pattern in dimensionless heights less than 0.9. In this study, bubbles are only present near a wall with heat flux that has a lower Rayleigh number. Also, existence of these bubbles on the wall, which prevents fluid infiltration, affects vortices caused by natural convection. However, the general and uniform patterns of vortices remain unchanged in most part of the fluid, which is because of the limited amount of bubbles near the wall with heat flux. Natural convection increases the height of fluid inside the chamber, which leads to the formation of stronger vortices at a dimensionless height of 0.9 that has a high Raleigh number due to high heat flux. In this case, the continuous use of heat flux gives rise to the production of bubbles over time.


Main Subjects

  1. Jakob, M., 1949. Heat Transfer, John Wiley & Sons, New York.
  2. Hsu, Y.-Y. and Graham, R. W., 1976. Transport processes in boiling and two-phase systems, including near-critical fluids, Washington.
  3. Lee, R. and Nydahl, J., 1989. Numerical calculation of bubble growth in nucleate boiling from inception through departure, ASME Journal of Heat Transfer, 111(2), pp. 474–479. Doi:10.1115/1.3250701
  4. Welch, S. W., 1998. Direct simulation of vapor bubble growth, International Journal of Heat and Mass Transfer, 41(12), pp. 1655-1666. Doi:10.1016/S0017-9310(97)00285-8
  5. Lay, J. and Dhir, V., 1995. Shape of a vapor stem during nucleate boiling of saturated liquids, ASME Journal of Heat Transfer, 117(2), pp. 394–401. Doi:10.1115/1.2822535
  6. Son, G., Dhir, V. K. and Ramanujapu, N., 1999. Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface, ASME Journal of Heat Transfer, 121(3), pp. 623–631. Doi:10.1115/1.2826025
  7. Son, G., Ramanujapu, N. and Dhir, V. K., 2002. Numerical simulation of bubble merger process on a single nucleation site during pool nucleate boiling, ASME Journal of Heat Transfer, 124(1), pp. 51-62. Doi:10.1115/1.1420713
  8. Mukherjee, A. and Dhir, V., 2004. Study of lateral merger of vapor bubbles during nucleate pool boiling, ASME Journal of Heat Transfer, 126(6), pp. 1023-1039. Doi:10.1115/1.1834614
  9. Shin, S., Abdel-Khalik, S. and Juric, D., 2005. Direct three-dimensional numerical simulation of nucleate boiling using the level contour reconstruction method, International Journal of Multiphase Flow, 31(10-11), pp. 1231-1242. Doi:10.1016/j.ijmultiphaseflow.2005.06.005
  10. Yoon, H. Y., Koshizuka, S. and Oka, Y., 2001. Direct calculation of bubble growth, departure, and rise in nucleate pool boiling, International Journal of Multiphase Flow, 27(2), pp. 277-298. Doi:10.1016/S0301-9322(00)00023-9
  11. Son, G. and Dhir, V. K., 2008. Numerical simulation of nucleate boiling on a horizontal surface at high heat fluxes, International Journal of heat and Mass transfer, 51(9-10), pp. 2566-2582. Doi:10.1016/j.ijheatmasstransfer.2007.07.046
  12. Chu, H. and Yu, B., 2009. A new comprehensive model for nucleate pool boiling heat transfer of pure liquid at low to high heat fluxes including CHF, International Journal of Heat and Mass Transfer, 52(19-20), pp. 4203-4210. Doi:10.1016/j.ijheatmasstransfer.2009.04.010
  13. McHale, J. P. and Garimella, S. V., 2013. Nucleate boiling from smooth and rough surfaces–Part 2: Analysis of surface roughness effects on nucleate boiling, Experimental Thermal and Fluid Science, 44, pp. 439-455. Doi:10.1016/j.expthermflusci.2012.08.005
  14. Hutter, C., Sanna, A., Karayiannis, T., Kenning, D., Nelson, R., Sefiane, K. and Walton, A., 2013. Vertical coalescence during nucleate boiling from a single artificial cavity, Experimental Thermal and Fluid Science, 51, pp. 94-102. Doi:10.1016/j.expthermflusci.2013.07.005
  15. Sanna, A., Hutter, C., Kenning, D., Karayiannis, T., Sefiane, K. and Nelson, R., 2014. Numerical investigation of nucleate boiling heat transfer on thin substrates, International Journal of Heat and Mass Transfer, 76, pp. 45-64. Doi:10.1016/j.ijheatmasstransfer.2014.04.026
  16. Jung, S. and Kim, H., 2014. An experimental method to simultaneously measure the dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface, International Journal of Heat and Mass Transfer, 73, pp. 365-375. Doi:10.1016/j.ijheatmasstransfer.2014.02.014
  17. Kunkelmann, C. and Stephan, P., 2010. Numerical simulation of the transient heat transfer during nucleate boiling of refrigerant HFE-7100, International Journal of Refrigeration, 33(7), pp. 1221-1228. Doi:10.1016/j.ijrefrig.2010.07.013
  18. Jia, H., Zhang, P., Fu, X. and Jiang, S., 2015. A numerical investigation of nucleate boiling at a constant surface temperature, Applied Thermal Engineering, 88, pp. 248-257. Doi:10.1016/j.applthermaleng.2014.09.022
  19. Ling, K., Li, Z.-Y. and Tao, W.-Q., 2014. A Direct Numerical Simulation for Nucleate Boiling by the VOSET Method, Numerical Heat Transfer, Part A: Applications, 65(10), pp. 949-971. Doi:10.1080/10407782.2013.850971
  20. Lal, S., Sato, Y. and Niceno, B., 2015. Direct numerical simulation of bubble dynamics in subcooled and near-saturated convective nucleate boiling, International Journal of Heat and Fluid Flow, 51, pp. 16-28. Doi:10.1016/j.ijheatfluidflow.2014.10.018
  21. Utaka, Y., Kashiwabara, Y. and Ozaki, M., 2013. Microlayer structure in nucleate boiling of water and ethanol at atmospheric pressure, International Journal of Heat and Mass Transfer, 57(1), pp. 222-230. Doi:10.1016/j.ijheatmasstransfer.2012.10.031
  22. Marcus, B. and Dropkin, D., 1963. The effect of surface configuration on nucleate boiling heat transfer, International Journal of Heat and Mass Transfer, 6(9), pp. 863-866. Doi:10.1016/0017-9310(63)90069-3
  23. Sarker, D., Franz, R., Ding, W. and Hampel, U., 2017. Single bubble dynamics during subcooled nucleate boiling on a vertical heater surface: An experimental analysis of the effects of surface characteristics, International Journal of Heat and Mass Transfer, 109, pp. 907-921. Doi:10.1016/j.ijheatmasstransfer.2017.02.017
  24. Salari, M., Kasaeipoor, A. and Malekshah, E. H., 2018. Influence of static bubbles at the surface of electrodes on the natural convection flow for application in high performance lead-acid battery, Thermal Science and Engineering Progress, 5, pp. 204-212. Doi:10.1016/j.tsep.2017.12.001
  25. Yao, S., Huang, T., Zhao, K., Zeng, J. and Wang, S., 2019. Simulation of flow boiling of nanofluid in tube based on lattice Boltzmann model, Thermal Science, 23(1), pp. 159-168. Doi:10.2298/TSCI160817006Y
  26. Stojanović, A. D., Stevanović, V. D., Petrović, M. M. and Zivkovic, D. S., 2016. Numerical investigation of nucleate pool boiling heat transfer, Thermal Science, 20, pp. S1301-S1312. Doi:10.2298/TSCI160404276S
  27. Kamel, M. S. and Lezsovits, F., 2019. Boiling heat transfer of nanofluids: A review of recent studies, Thermal Science, 23(1), pp. 109-124. Doi:10.2298/TSCI170419216K
  28. Jeon, S.-S., Kim, S.-J. and Park, G.-C., Year.CFD simulation of condensing vapor bubble using VOF model, Proceedings of World Academy of Science, Engineeri
    ng and Technology: Citeseer, pp. 209-215. Available at: https://citeseerx.ist.psu.edu/viewdoc/download?doi=
  29. Kaneyasu, N., Yasunobu, F., Satoru, U. and Haruhiko, O., 1984. Effect of surface configuration on nucleate boiling heat transfer, International Journal of Heat and Mass Transfer, 27(9), pp. 1559-1571. Doi:10.1016/0017-9310(84)90268-0
  30. Van Stralen, S., Sohal, M., Cole, R. and Sluyter, W., 1975. Bubble growth rates in pure and binary systems: combined effect of relaxation and evaporation microlayers, International Journal of Heat and Mass Transfer, 18(3), pp. 453-467. Doi:10.1016/0017-9310(75)90033-2
  31. Chi-Yeh, H. and Griffith, P., 1965. The mechanism of heat transfer in nucleate pool boiling—Part II: The heat flux-temperature difference relation, International Journal of Heat and Mass Transfer, 8(6), pp. 905-914. Doi:10.1016/0017-9310(65)90074-8
  32. Zuber, N., 1961. The dynamics of vapor bubbles in nonuniform temperature fields, International Journal of Heat and Mass Transfer, 2(1-2), pp. 83-98. Doi:10.1016/0017-9310(61)90016-3
  33. Peebles FN and HJ, G., 1953. Study on motion of gas bubbles in liquids, Chemical Engineering Progress, 49, pp. 88–97.
  34. Hamzekhani, S., Falahieh, M. M. and Akbari, A., 2014. Bubble departure diameter in nucleate pool boiling at saturation: Pure liquids and binary mixtures, International journal of refrigeration, 46, pp. 50-58. Doi:10.1016/j.ijrefrig.2014.07.003
  35. Etbaeitabari, A., Barakat, M., Imani, A., Domairry, G. and Jalili, P., 2013. An analytical heat transfer assessment and modeling in a natural convection between two infinite vertical parallel flat plates, Journal of Molecular Liquids, 188, pp. 252-257. Doi:10.1016/j.molliq.2013.09.010
  36. Jalili, B., Jalili, P., Sadighi, S. and Ganji, D. D., 2021. Effect of magnetic and boundary parameters on flow characteristics analysis of micropolar ferrofluid through the shrinking sheet with effective thermal conductivity, Chinese Journal of Physics, 71, pp. 136-150. Doi:10.1016/j.cjph.2020.02.034
  37. Jalili, B., Sadighi, S., Jalili, P. and Ganji, D. D., 2019. Characteristics of ferrofluid flow over a stretching sheet with suction and injection, Case Studies in Thermal Engineering, 14, pp. 100470. Doi:10.1016/j.csite.2019.100470
  38. Jalili, P., Ganji, D. D., Jalili, B. and Ganji, D. R. M., 2012. Evaluation of electro-osmotic flow in a nanochannel via semi-analytical method, Thermal Science, 16(5), pp. 1297-1302. Available at: http://www.doiserbia.nb.rs/img/doi/0354-9836/2012/0354-98361205297J.pdf
  39. Jalili, P., Jalili, B., Shateri, A. and Ganji, D. D., 2022. A novel analytical approach to micropolar nanofluid thermal analysis in the presence of thermophoresis, brownian motion, and hall currents, Case Studies in Thermal Engineering, 35, pp. 102086. Doi:10.1016/j.csite.2022.102086
  40. Mohanty, R. L. and Das, M. K., 2017. A critical review on bubble dynamics parameters influencing boiling heat transfer, Renewable and Sustainable Energy Reviews, 78, pp. 466-494. Doi:10.1016/j.rser.2017.04.092
  41. Jung, D., Kim, Y., Ko, Y. and Song, K., 2003. Nucleate boiling heat transfer coefficients of pure halogenated refrigerants, International Journal of Refrigeration, 26(2), pp. 240-248. Doi:10.1016/S0140-7007(02)00040-3