Document Type : Original Article


Department of Electrical Engineering, Faculty of Engineering, Soegijapranata Catholic University, Semarang 50234, Indonesia


Renewable energy is energy that can be used indefinitely. As a result, renewable energy sources such as solar photovoltaics developed. Conventional converters, typically used to connect the microgrid to the battery, only change the voltage. To link the microgrid to the battery, bidirectional converters are required. A bidirectional converter is available in a variety of configurations. The control structure is highly sophisticated to obtain a satisfactory output. This article proposes a bidirectional DC-DC buck-boost converter for controlling current in DC microgrids, solar systems, and loads. A bidirectional DC-DC Buck-Boost converter is required to transmit and receive energy from the battery to the DC microgrid. When voltage is sent to the DC microgrid, the battery voltage is reduced. Otherwise, the charging voltage is increased when a battery is charged by voltage. This converter produces a better output voltage than an AC-DC Buck-Boost Converter, and its switching frequency is double that of typical converters. The modified DC-DC converter has the simplest form and the advantage of having the highest responsiveness.


Main Subjects

  1. Zhang, Q. Zhou, L. Zhao, Y. Ma, Q. Lv and P. Gao., 2020. Dynamic Reactive Power Configuration of High Penetration Renewable Energy Grid Based on Transient Stability Probability Assessment. 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), pp. 3801-3805. Doi: 10.1109/EI250167.2020.9346594.
  2. Mahmoud, A., Saafan, S., Attalla, A., Elgohary, H., 2018. Enhancement of Rooftop Photovoltaic Array Characteristic Interconnected by Grid under Partial Shading Condition Using Cascaded DC/DC Converter. Iranian (Iranica) Journal of Energy & Environment, 9(1), pp. 24-30. Doi: 10.5829/ijee.2018.09.01.04
  3. Shiravi, A., Firoozzadeh, M., 2022. A Novel Proposed Improvement on Performance of a Photovoltaic/Water Pumping System: Energy and Environmental Analysis, Iranian (Iranica) Journal of Energy & Environment, 13(2), pp. 202-208. Doi: 10.5829/ijee.2022.13.02.11
  4. Wang, Y. Ma, P. Ding, R. Mu and R. Sun., 2018. Operation Control Strategy for Photovoltaic/Battery Micro-Grid. 2018 China International Conference on Electricity Distribution (CICED), pp.821-824. Doi: 10.1109/CICED.2018.8592593.
  5. N. Soheli, G. Sarowar, M. A. Hoque and M. S. Hasan, 2018. Design and Analysis of a DC -DC Buck Boost Converter to Achieve High Efficiency and Low Voltage Gain by using Buck Boost Topology into Buck Topology. 2018 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE), pp.1-4. Doi: 10.1109/ICAEEE.2018.8643001.
  6. Chen, K. Wang, Z. Li and T. Zheng, 2017. A review on control strategies of AC/DC microgrid. 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), pp.1-6. Doi: 10.1109/EEEIC.2017.7977807.
  7. Nupur and S. Nath, 2020. Inductor Current Ripples Minimization in Coupled SIDO Buck and Buck-Boost Converter by Gate Pulse Shifting. 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), pp.1-6. Doi: 10.1109/PEDES49360.2020.9379406.
  8. Hajizadeh, A, 2014. Fuzzy/State-Feedback Control of a Non-Inverting Buck-Boost Converter for Fuel Cell Electric Vehicles. Iranica Journal of Energy & Environment, 5(1), pp.34-41. Doi: 10.5829/idosi.ijee.2014.05.01.06.
  9. Hou, X. Tang, X. Shi, H. Jiang, H. Liu and Y. Song, 2019. Research on Control Method of Energy Storage Interface for DC Micro-grid. IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2), pp.1579-1583. Doi: 10.1109/EI247390.2019.9061799.
  10. V. R. Sagar; T. Debela, 2019. Implementation of Optimal Load Balancing Strategy for Hybrid Energy Management System in DC/AC Microgrid with PV and Battery Storage. International Journal of Engineering-Transactions A: Basics, 32(10), pp.1437-1445. Doi: 10.5829/IJE.2019.32.10A.13
  11. Sukatjasakul and S. Po-Ngam, 2017. The micro-grid connected single-phase photovoltaic inverter with simple MPPT controller. 2017 International Electrical Engineering Congress (iEECON), pp.1-4. Doi: 10.1109/IEECON.2017.8075751.
  12. Ghosh and S. S. Saran, 2018. High gain DC-DC step-up converter with multilevel output voltage. 2018 International Symposium on Devices, Circuits and Systems (ISDCS), pp.1-6. Doi: 10.1109/ISDCS.2018.8379657.
  13. W. Khan, H. Minxiao, C. Kai, L. Yang and A. u. Rehman, 2020. State of the Art DC-DC Converter Topologies for the Multi-Terminal DC Grid Applications: A Review, 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), pp.1-7. Doi: 10.1109/PESGRE45664.2020.9070529.
  14. Jyothi, P. Bhavana, B. T. Rao and M. S. K. Reddy, 2021. A Review on Various DC-DC Converters for Photo Voltaic Based DC Micro Grids, 2021 Emerging Trends in Industry 4.0 (ETI 4.0), pp.1-8. Doi: 10.1109/ETI4.051663.2021.9619280.
  15. Dubey and A. k. Sharma, 2019. Analysis of Bi-directional DC-DC Buck-Boost Quadratic Converter for Energy Storage Devices. 2019 International Conference on Communication and Electronics Systems (ICCES), pp.417-421. Doi: 10.1109/ICCES45898.2019.9002112.
  16. Tian, Wang, H., Wang, Y., Yan, J., Xu, R., Wang, F., Zhuo, F., 2021. Power Characteristics of A Novel DC-DC Converter with Carrier Phase-Shifted Control. 2021 IEEE 4th International Electrical and Energy Conference (CIEEC), pp.1-6. Doi: 10.1109/CIEEC50170.2021.9510921.
  17. Jahanghiri, S. Rahimi, A. Shaker and A. Ajami, 2019. A High Conversion Non-Isolated Bidirectional DC-DC converter with Low Stress for Micro-Grid Applications, 2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC), pp.775-780. Doi: 10.1109/PEDSTC.2019.8697711.
  18. M. Kumar, A. Kumar, A. H. Bhat and P. Agarwal, 2017. Comparative study of dual active bridge isolated DC to DC converter with single phase shift and dual phase shift control techniques. 2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE), pp.453-458. Doi: 10.1109/RDCAPE.2017.8358314.
  19. Hou, X. Tang, X. Shi, H. Jiang, H. Liu and Y. Song, 2019. Research on Control Method of Energy Storage Interface for DC Micro-grid. 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2), pp.1579-1583. Doi: 10.1109/EI247390.2019.9061799.
  20. Mahalingam Prabhakar, 2014. High Gain DC-DC Converter using Active Clamp Circuit (RESEARCH NOTE). International Journal of Engineering, Transactions A: Basics, Vol. 27(1), pp.123-130. Doi: 10.5829/idosi.ije.2014.27.01a.15
  21. Gnana Prakash M, Balamurugan M, Umashankar S, 2014. A New Multilevel Inverter with Reduced Number of Switches. International Journal of Power Electronics and Drive System (IJPEDS). 5(1): 63-70. Available at:
  22. Rivera, M. Mauledoux, A. Valencia, R. Jimenez, O. Avilés, 2018. Hardware in Loop of a Generalized Predictive Controller for a Micro Grid DC System of Renewable Energy Sources. International Journal of Engineering-Transactions B: Applications, 31(8), pp.1215-1221. Doi: 10.5829/ije.2018.31.08b.08
  23. Monteiro, J. C. Tiago Sousa and J. L. Afonso, 2020. A Novel Topology of Modular Multilevel Bidirectional Non-Isolated dc-dc Converter. 2020 International Young Engineers Forum (YEF-ECE), pp. 61-66. Doi: 10.1109/YEF-ECE49388.2020.9171809.