Production of Materials with High Thermal Insulation from Natural Fibers and Sericin

Document Type : Research Note


Department of Architectural Technology, Faculty of Architecture and Art, University of Kashan, Kashan, Iran


Silkworm cocoon is a natural biological and composite structure that has evolved over time and has high physical and mechanical properties against stress and acts as insulation against ambient temperature conditions. Understanding the relationships between the two-component structure of silkworm cocoons (sericin and fibroin) inspires the creation of composite structures, including lightweight, high-strength nonwoven biocomposites. In the present study, by analytical-descriptive method, we have tried to use cocoon sericin and introduce some famous and widely used natural fibers in materials science and study their characteristics - because for various reasons such as lightness, lack of pollution and low cost, etc. can be suitable alternative for a replacement of synthetic fibers - suggest the production of non-woven bio-composite materials. Natural fibers such as jute, hemp, flax, etc. with different volume percentages in combination with sericin as a binder, were proposed for this biocomposite and the thermal performance of each of them was compared using Maxwell's theoretical model. All compounds show low thermal conductivity and jute-sericin biocomposite with 70% by volume and 0.061 W/m2-K performance has better performance.


Main Subjects

  1. Bechthold, M. and Weaver, J. C., 2017. Materials Science and Architecture, Nature Reviews Materials, 2(12), pp. 1-19. Doi:10.1038/natrevmats.2017.82
  2. Chen, F., Porter, D. and Vollrath, F., 2010. Silkworm cocoons inspire models for random fiber and particulate composites, Physical Review E, 82(4), pp. 041911. Doi:10.1103/PhysRevE.82.041911
  3. Gupta, D., Agrawal, A. and Rangi, A., 2014. Extraction and characterization of silk sericin, Indian Journal of Fibre & Textile Research (IJFTR), 39(4), pp. 364-372. URL:
  4. Chen, F., 2011. Silk cocoons as composites. Oxford University, UK [Online Thesis] Available at: (Accessed).
  5. Blossman-Myer, B. and Burggren, W. W., 2010. The silk cocoon of the silkworm, Bombyx mori: macro structure and its influence on transmural diffusion of oxygen and water vapor, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 155(2), pp. 259-263. Doi:10.1016/j.cbpa.2009.11.007
  6. Kwak, H. W., Eom, J., Cho, S. Y., Lee, M. E. and Jin, H.-J., 2019. High-toughness natural polymer nonwoven preforms inspired by silkworm cocoon structure, International Journal of Biological Macromolecules, 127, pp. 146-152. Doi:10.1016/j.ijbiomac.2019.01.005
  7. Korjenic, A., Zach, J. and Hroudová, J., 2016. The use of insulating materials based on natural fibers in combination with plant facades in building constructions, Energy and Buildings, 116, pp. 45-58. Doi:10.1016/j.enbuild.2015.12.037
  8. Khedari, J., Suttisonk, B., Pratinthong, N. and Hirunlabh, J., 2001. New lightweight composite construction materials with low thermal conductivity, Cement and Concrete Composites, 23(1), pp. 65-70. Doi:10.1016/S0958-9465(00)00072-X
  9. Chen, F., Porter, D. and Vollrath, F., 2012. Silk cocoon (Bombyx mori): multi-layer structure and mechanical properties, Acta Biomaterialia, 8(7), pp. 2620-2627. Doi:10.1016/j.actbio.2012.03.043
  10. De Lima, A., Farias Neto, S. and Silva, W., 2012. Heat and mass transfer in porous materials with complex geometry: fundamentals and applications, Heat and Mass Transfer in Porous Media: Springer, pp. 161-185. Doi:10.1007/978-3-642-21966-5_7
  11. Jin, X., Zhang, J., Gao, W., Li, J. and Wang, X., 2015. Interfacial heat transfer through a natural protective fibrous architecture: a wild silkworm cocoon wall, Textile Research Journal, 85(10), pp. 1035-1044. Doi:10.1177/0040517514559585
  12. Zhang, J., Li, J., Jin, X., Du, S., Kaur, J. and Wang, X., 2017. Natural and highly protective composite structures–wild silkworm cocoons, Composites Communications, 4, pp. 1-4. Doi:10.1016/j.coco.2017.02.005
  13. Mondal, M., Trivedy, K. and NIRMAL, K. S., 2007. The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn.,-a review, Caspian Journal of Environmental Sciences, 5(2), pp. 63-76. URL:
  14. Padamwar, M. and Pawar, A., 2004. Silk sericin and its applications: A review, Journal of Scientific & Industrial Research, 63(4), pp. 323-329.
  15. Nakanishi, E. Y., Cabral, M. R., de Souza Gonçalves, P., dos Santos, V. and Junior, H. S., 2018. Formaldehyde-free particleboards using natural latex as the polymeric binder, Journal of Cleaner Production, 195, pp. 1259-1269. Doi:10.1016/j.jclepro.2018.06.019
  16. Rwawiire, S., Tomkova, B., Militky, J., Hes, L. and Kale, B. M., 2017. Acoustic and thermal properties of a cellulose nonwoven natural fabric (barkcloth), Applied acoustics, 116, pp. 177-183. Doi:10.1016/j.apacoust.2016.09.027
  17. Silva, D. A. L., Lahr, F. A. R., Varanda, L. D., Christoforo, A. L. and Ometto, A. R., 2015. Environmental performance assessment of the melamine-urea-formaldehyde (MUF) resin manufacture: A case study in Brazil, Journal of Cleaner Production, 96, pp. 299-307. Doi:10.1016/j.jclepro.2014.03.007
  18. E Njoku, C., K Alaneme, K., A Omotoyinbo, J. and O Daramola, M., 2019. Natural Fibers as Viable Sources for the Development of Structural, Semi-Structural, and Technological Materials–A Review, Advanced Materials Letters, 10(10), pp. 682-694. Doi:10.5185/amlett.2019.9907
  19. Bongarde, U. and Shinde, V., 2014. Review on natural fiber reinforcement polymer composites, International Journal of Engineering Science and Innovative Technology, 3(2), pp. 431-436. ISSN: 2319-5967
  20. Gon, D., Das, K., Paul, P. and Maity, S., 2012. Jute composites as wood substitute, International Journal of Textile Science, 1(6), pp. 84-93. Doi:10.5923/j.textile.20120106.05
  21. Karimah, A., Ridho, M. R., Munawar, S. S., Adi, D. S., Damayanti, R., Subiyanto, B., Fatriasari, W. and Fudholi, A., 2021. A review on natural fibers for development of eco-friendly bio-composite: Characteristics, and utilizations, Journal of Materials Research and Technology, 13, pp. 2442-2458. Doi:10.1016/j.jmrt.2021.06.014
  22. Rajak, D., Pagar, D., Menezes, P. and Linul, E., 2019. EmanoilLinul, Fiber-reinforced polymer composites: manufacturing, Properties, and Applications, Polymers, 11(10). Doi:10.3390/polym11101667
  23. Sen, T. and Reddy, H. J., 2011. Application of sisal, bamboo, coir and jute natural composites in structural upgradation, International Journal of Innovation, Management and Technology, 2(3), pp. 186. Doi:10.7763/IJIMT.2011.V2.129
  24. Thyavihalli Girijappa, Y. G., Mavinkere Rangappa, S., Parameswaranpillai, J. and Siengchin, S., 2019. Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review, Frontiers in Materials, pp. 226. Doi:10.3389/fmats.2019.00226
  25. Domke, P. V. and Mude, V. D., 2015. Natural fiber reinforced building materials, IOSR Journal of Mechanical and Civil Engineering, 12, pp. 104-107. Doi:10.9790/1684-1232104107
  26. Manohar, K., Ramlakhan, D., Kochhar, G. and Haldar, S., 2006. Biodegradable fibrous thermal insulation, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 28(1),pp. 45-47. Doi:10.1590/S1678-58782006000100005
  27. Asdrubali, F., D'Alessandro, F. and Schiavoni, S., 2015. A review of unconventional sustainable building insulation materials, Sustainable Materials and Technologies, 4, pp. 1-17. Doi:10.1016/j.susmat.2015.05.002
  28. Pujari, S., Ramakrishna, A. and Balaram Padal, K. T., 2017. Investigations on thermal conductivities of jute and banana fiber reinforced epoxy composites, Journal of The Institution of Engineers (India): Series D, 98(1), pp. 79-83. Doi:10.1007/s40033-015-0102-8