Silkworm cocoon is a natural biological and composite structure that has evolved over time and has high physical and mechanical properties against stress and acts as insulation against ambient temperature conditions. Understanding the relationships between the two-component structure of silkworm cocoons (sericin and fibroin) inspires the creation of composite structures, including lightweight, high-strength nonwoven biocomposites. In the present study, by analytical-descriptive method, we have tried to use cocoon sericin and introduce some famous and widely used natural fibers in materials science and study their characteristics - because for various reasons such as lightness, lack of pollution and low cost, etc. can be suitable alternative for a replacement of synthetic fibers - suggest the production of non-woven bio-composite materials. Natural fibers such as jute, hemp, flax, etc. with different volume percentages in combination with sericin as a binder, were proposed for this biocomposite and the thermal performance of each of them was compared using Maxwell's theoretical model. All compounds show low thermal conductivity and jute-sericin biocomposite with 70% by volume and 0.061 W/m2-K performance has better performance.
Bechthold, M. and Weaver, J. C., 2017. Materials Science and Architecture, Nature Reviews Materials, 2(12), pp. 1-19. Doi:10.1038/natrevmats.2017.82
Chen, F., Porter, D. and Vollrath, F., 2010. Silkworm cocoons inspire models for random fiber and particulate composites, Physical Review E, 82(4), pp. 041911. Doi:10.1103/PhysRevE.82.041911
Blossman-Myer, B. and Burggren, W. W., 2010. The silk cocoon of the silkworm, Bombyx mori: macro structure and its influence on transmural diffusion of oxygen and water vapor, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 155(2), pp. 259-263. Doi:10.1016/j.cbpa.2009.11.007
Kwak, H. W., Eom, J., Cho, S. Y., Lee, M. E. and Jin, H.-J., 2019. High-toughness natural polymer nonwoven preforms inspired by silkworm cocoon structure, International Journal of Biological Macromolecules, 127, pp. 146-152. Doi:10.1016/j.ijbiomac.2019.01.005
Korjenic, A., Zach, J. and Hroudová, J., 2016. The use of insulating materials based on natural fibers in combination with plant facades in building constructions, Energy and Buildings, 116, pp. 45-58. Doi:10.1016/j.enbuild.2015.12.037
Khedari, J., Suttisonk, B., Pratinthong, N. and Hirunlabh, J., 2001. New lightweight composite construction materials with low thermal conductivity, Cement and Concrete Composites, 23(1), pp. 65-70. Doi:10.1016/S0958-9465(00)00072-X
Chen, F., Porter, D. and Vollrath, F., 2012. Silk cocoon (Bombyx mori): multi-layer structure and mechanical properties, Acta Biomaterialia, 8(7), pp. 2620-2627. Doi:10.1016/j.actbio.2012.03.043
De Lima, A., Farias Neto, S. and Silva, W., 2012. Heat and mass transfer in porous materials with complex geometry: fundamentals and applications, Heat and Mass Transfer in Porous Media: Springer, pp. 161-185. Doi:10.1007/978-3-642-21966-5_7
Jin, X., Zhang, J., Gao, W., Li, J. and Wang, X., 2015. Interfacial heat transfer through a natural protective fibrous architecture: a wild silkworm cocoon wall, Textile Research Journal, 85(10), pp. 1035-1044. Doi:10.1177/0040517514559585
Zhang, J., Li, J., Jin, X., Du, S., Kaur, J. and Wang, X., 2017. Natural and highly protective composite structures–wild silkworm cocoons, Composites Communications, 4, pp. 1-4. Doi:10.1016/j.coco.2017.02.005
Mondal, M., Trivedy, K. and NIRMAL, K. S., 2007. The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn.,-a review, Caspian Journal of Environmental Sciences, 5(2), pp. 63-76. URL: https://www.sid.ir/en/journal/ViewPaper.aspx?id=140809
Padamwar, M. and Pawar, A., 2004. Silk sericin and its applications: A review, Journal of Scientific & Industrial Research, 63(4), pp. 323-329.
Nakanishi, E. Y., Cabral, M. R., de Souza Gonçalves, P., dos Santos, V. and Junior, H. S., 2018. Formaldehyde-free particleboards using natural latex as the polymeric binder, Journal of Cleaner Production, 195, pp. 1259-1269. Doi:10.1016/j.jclepro.2018.06.019
Rwawiire, S., Tomkova, B., Militky, J., Hes, L. and Kale, B. M., 2017. Acoustic and thermal properties of a cellulose nonwoven natural fabric (barkcloth), Applied acoustics, 116, pp. 177-183. Doi:10.1016/j.apacoust.2016.09.027
Silva, D. A. L., Lahr, F. A. R., Varanda, L. D., Christoforo, A. L. and Ometto, A. R., 2015. Environmental performance assessment of the melamine-urea-formaldehyde (MUF) resin manufacture: A case study in Brazil, Journal of Cleaner Production, 96, pp. 299-307. Doi:10.1016/j.jclepro.2014.03.007
E Njoku, C., K Alaneme, K., A Omotoyinbo, J. and O Daramola, M., 2019. Natural Fibers as Viable Sources for the Development of Structural, Semi-Structural, and Technological Materials–A Review, Advanced Materials Letters, 10(10), pp. 682-694. Doi:10.5185/amlett.2019.9907
Bongarde, U. and Shinde, V., 2014. Review on natural fiber reinforcement polymer composites, International Journal of Engineering Science and Innovative Technology, 3(2), pp. 431-436. ISSN: 2319-5967
Gon, D., Das, K., Paul, P. and Maity, S., 2012. Jute composites as wood substitute, International Journal of Textile Science, 1(6), pp. 84-93. Doi:10.5923/j.textile.20120106.05
Karimah, A., Ridho, M. R., Munawar, S. S., Adi, D. S., Damayanti, R., Subiyanto, B., Fatriasari, W. and Fudholi, A., 2021. A review on natural fibers for development of eco-friendly bio-composite: Characteristics, and utilizations, Journal of Materials Research and Technology, 13, pp. 2442-2458. Doi:10.1016/j.jmrt.2021.06.014
Rajak, D., Pagar, D., Menezes, P. and Linul, E., 2019. EmanoilLinul, Fiber-reinforced polymer composites: manufacturing, Properties, and Applications, Polymers, 11(10). Doi:10.3390/polym11101667
Sen, T. and Reddy, H. J., 2011. Application of sisal, bamboo, coir and jute natural composites in structural upgradation, International Journal of Innovation, Management and Technology, 2(3), pp. 186. Doi:10.7763/IJIMT.2011.V2.129
Thyavihalli Girijappa, Y. G., Mavinkere Rangappa, S., Parameswaranpillai, J. and Siengchin, S., 2019. Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review, Frontiers in Materials, pp. 226. Doi:10.3389/fmats.2019.00226
Domke, P. V. and Mude, V. D., 2015. Natural fiber reinforced building materials, IOSR Journal of Mechanical and Civil Engineering, 12, pp. 104-107. Doi:10.9790/1684-1232104107
Manohar, K., Ramlakhan, D., Kochhar, G. and Haldar, S., 2006. Biodegradable fibrous thermal insulation, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 28(1),pp. 45-47. Doi:10.1590/S1678-58782006000100005
Asdrubali, F., D'Alessandro, F. and Schiavoni, S., 2015. A review of unconventional sustainable building insulation materials, Sustainable Materials and Technologies, 4, pp. 1-17. Doi:10.1016/j.susmat.2015.05.002
Pujari, S., Ramakrishna, A. and Balaram Padal, K. T., 2017. Investigations on thermal conductivities of jute and banana fiber reinforced epoxy composites, Journal of The Institution of Engineers (India): Series D, 98(1), pp. 79-83. Doi:10.1007/s40033-015-0102-8
Pakdel, M., & Alemi, B. (2022). Production of Materials with High Thermal Insulation from Natural Fibers and Sericin. Iranian (Iranica) Journal of Energy & Environment, 13(3), 314-319. doi: 10.5829/ijee.2022.13.03.11
MLA
M. Pakdel; B. Alemi. "Production of Materials with High Thermal Insulation from Natural Fibers and Sericin". Iranian (Iranica) Journal of Energy & Environment, 13, 3, 2022, 314-319. doi: 10.5829/ijee.2022.13.03.11
HARVARD
Pakdel, M., Alemi, B. (2022). 'Production of Materials with High Thermal Insulation from Natural Fibers and Sericin', Iranian (Iranica) Journal of Energy & Environment, 13(3), pp. 314-319. doi: 10.5829/ijee.2022.13.03.11
VANCOUVER
Pakdel, M., Alemi, B. Production of Materials with High Thermal Insulation from Natural Fibers and Sericin. Iranian (Iranica) Journal of Energy & Environment, 2022; 13(3): 314-319. doi: 10.5829/ijee.2022.13.03.11