Document Type : Original Article


1 Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran

2 Department of Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran


Cellulose nanocomposites were synthesized and applied to the removal of Pb(II) from aqueous solution. The synthesized nanocomposite was characterized by FT-IR, XRD, SEM, TEM, and BET analyses. Removal experiments were carried out in laboratory scale and then evaluated by response surface methodology (RSM) with a Central-Composite Design. The effects of solution pH, contact tie, initial Pb(II) concentration, adsorbent dosage and temperature on the removal efficiency were evaluated. Analysis of variance (ANOVA) was employed to find which parameter has a significant effect on the removal efficiency. The best removal efficiency value was found to be at the initial solution pH of 6.5, temperature of 34°C, initial ion concentration of 100 mg/L and the adsorbent dosage of 0.74 g/L. At this condition, the removal efficiency of Pb(II) ions was 92.54%. The adsorption equilibrium data fitted well with Langmuir isotherm model and the adsorption process followed the pseudo-second-order and intra-particle diffusion kinetic model. Thermodynamic analysis suggests that the adsorption process is endothermic, with an increasing entropy and spontaneous in nature. Besides, the nanocomposite was reused in four successive adsorption–desorption cycles, revealing a good regeneration capacity of the adsorbent. The effects of coexist cation ions on the adsorption of Pb(II) under optimal condition was also investigated. All the results demonstrate that nanocomposite is a potential recyclable adsorbent for hazardous metal ions in wastewater system.


Main Subjects

  1. Kim, S., Chu, K. H., Al-Hamadani, Y. A., Park, C. M., Jang, M., Kim, D.-H., Yu, M., Heo, J. and Yoon, Y., 2017. Removal of contaminants of emerging concern by membranes in water and wastewater: A review, Chemical Engineering Journal, 335, pp. 896-914. Doi: 10.1016/j.cej.2017.11.044
  2. Fu, F. and Wang, Q., 2011. Removal of heavy metal ions from wastewaters: A review, Journal of Environmental Management, 92(3), pp. 407-418. Doi:10.1016/j.jenvman.2010.11.011
  3. Lee, K. P., C.Arnot, T. and Mattia, D., 2011. A review of reverse osmosis membrane materials for desalination—Development to date and future potential, Journal of Membrane Science, 370(1–2), pp. 1-22.
  4. Wan, S., Zhao, X., Lv, L., Su, Q., Gu, H., Pan, B., Zhang, W., Lin, Z. and Luan, J., 2010. Selective adsorption of Cd(II) and Zn(II) ions by nano-hydrous manganese dioxide (HMO)-encapsulated cation exchanger, Industrial and Engineering Chemistry Research, 49(16), pp. 7574-7579. Doi:10.1021/ie101003y
  5. Bai, Y. and Bartkiewicz, B., 2009. Removal of Cadmium from Wastewater Using Ion Exchange Resin Amberjet 1200H Columns, Polish Journal of Environmental Studies, 18(6), pp. 1191–1195.
  6. Wild, S. R., Rudd, T. and Neller, A., 1994. Fate and effects of cyanide during wastewater treatment processes, Science of The Total Environment, 156(2), pp. 93-107. Doi: 10.1016/0048-9697(94)90346-8
  7. Cao, B., Teng, X., Heo, S. H., Li, Y., Cho, S. O., Li, G. and Cai, W., 2007. Different ZnO nanostructures fabricated by a seed-layer assisted electrochemical route and their photoluminescence and field emission properties, Journal of Physical Chemistry C, 111(6), pp. 2470-2476. Doi:10.1021/jp066661l
  8. Cao, B., Cai, W., Zeng, H. and Duan, G., 2006. Morphology evolution and photoluminescence properties of ZnO films electrochemically deposited on conductive glass substrates, Journal of Applied Physics, 99(7). Doi:10.1063/1.2188132
  9. Zhu, K., Duan, Y., Wang, F., Gao, P., Jia, H., Ma, C. and Wang, C., 2017. Silane-modified halloysite/Fe3O4 nanocomposites: Simultaneous removal of Cr (VI) and Sb (V) and positive effects of Cr (VI) on Sb (V) adsorption, Chemical Engineering Journal, 311, pp. 236-246.
  10. Xu, Q., Wang, Y., Jin, L., Wang, Y. and Qin, M., 2017. Adsorption of Cu (II), Pb (II) and Cr (VI) from aqueous solutions using black wattle tannin-immobilized nanocellulose, Journal of hazardous materials, 339, pp. 91-99. Doi: 10.1016/j.jhazmat.2017.06.005
  11. Sun, J., Wang, C., Zeng, L., Xu, P., Yang, X., Chen, J., Xing, X., Jin, Q. and Yu, R., 2016. Controllable assembly of CeO2 micro/nanospheres with  adjustable size and their application in Cr (VI) adsorption, Materials Research Bulletin, 75, pp. 110-114. Doi: 10.1016/j.materresbull.2015.11.035
  12. Ren, H., Jiang, J., Wu, D., Gao, Z., Sun, Y. and Luo, C., 2016. Selective adsorption of Pb (II) and Cr (VI) by surfactant-modified and unmodified natural zeolites: a comparative study on kinetics, equilibrium, and mechanism, Water, Air, & Soil Pollution, 227(4), pp. 101. Doi: 10.1007/s11270-016-2790-6
  13. Li, X., Gao, X., Ai, L. and Jiang, J., 2015. Mechanistic insight into the interaction and adsorption of Cr (VI) with zeolitic imidazolate framework-67 microcrystals from aqueous solution, Chemical Engineering Journal, 274, pp. 238-246. Doi: 10.1016/j.cej.2015.03.127
  14. Yari, S., Abbasizadeh, S., Mousavi, S. E., Moghaddam, M. S. and Moghaddam, A. Z., 2015. Adsorption of Pb (II) and Cu (II) ions from aqueous solution by an electrospun CeO2 nanofiber adsorbent functionalized with mercapto groups, Process Safety and Environmental Protection, 94, pp. 159-171. Doi: 10.1016/j.psep.2015.01.011
  15. Liu, W., Zhang, J., Jin, Y., Zhao, X. and Cai, Z., 2015. Adsorption of Pb (II), Cd (II) and Zn (II) by extracellular polymeric substances extracted from aerobic granular sludge: efficiency of protein, Journal of Environmental Chemical Engineering, 3(2), pp. 1223-1232. Doi: 10.1016/j.jece.2015.04.009
  16. Cao, C., Xiao, L., Chen, C., Shi, X., Cao, Q. and Gao, L., 2014. In situ preparation of magnetic Fe3O4/chitosan nanoparticles via a novel reduction–precipitation method and their application in adsorption of reactive azo dye, Powder Technology, 260, pp. 90-97. Doi: 10.1016/j.powtec.2014.03.025
  17. Malathi, S., Daniel, S. C. G. K., Vaishnavi, S., Sivakumar, M. and Balasubramanian, S., 2014. Chitosan-based polymer nanocomposites for heavy metal removal (Chapter 1), Nanocomposites in Wastewater Treatment, Pan Stanford Publishing Pte. Ltd., pp.1-22. eISSN: 978-981-4463-55-3
  18. Ahmadi, A., Heidarzadeh, S., Mokhtari, A. R., Darezereshki, E. and AsadiHarouni, H., 2014. Optimization of heavy metal removal from aqueous solutions by maghemite (γ-Fe2O3) nanoparticles using response surface methodology, Journal of Geochemical Exploration, 147, pp. 151-158. Doi: 10.1016/j.gexplo.2014.10.005
  19. Radoń, A., Drygała, A., Hawełek, Ł. and Łukowiec, D., 2017. Structure and optical properties of Fe3O4 nanoparticles synthesized by co-precipitation method with different organic modifiers, Materials Characterization 131, pp. 148-156. Doi: 10.1016/j.matchar.2017.06.034
  20. Sureshkumar, V., Daniel, S. K., Ruckmani, K. and Sivakumar, M., 2016. Fabrication of chitosan–magnetite nanocomposite strip for chromium removal, Applied Nanoscience, 6(2), pp. 277-285.Doi: 10.1007/s13204-015-0429-3
  21. Fan, C., Li, K., He, Y., Wang, Y., Qian, X. and Ji, J., 2018. Evaluation of magnetic chitosan beads for adsorption of heavy metal ions, Science of The Total Environment, 627, pp. 1396-1403. Doi: 10.1016/j.scitotenv.2018.02.033
  22. Song, X., Li, L., Zhou, L. and Chen, P., 2018. Magnetic thiolated/quaternized-chitosan composites design and application for various heavy metal ions removal, including cation and anion, Chemical Engineering Research and Design, 136, pp. 581-592. Doi: 10.1016/j.cherd.2018.06.025
  23. Rathinam, K., Singh, S. P., Arnusch, C. J. and Kasher, R., 2018. An environmentally-friendly chitosan-lysozyme biocomposite for the effective removal of dyes and heavy metals from aqueous solutions, Carbohydrate Polymers, 199, pp. 506-515. Doi: 10.1016/j.carbpol.2018.07.055
  24. Yu, J. and Wang, D., 2021. Current trends and challenges in the synthesis and applications of chitosan-based nanocomposites for plants: A review, Carbohydrate Polymers, 261, pp. 117904. Doi: 10.1016/j.carbpol.2021.117904
  25. Zayed, A. M., Selim, A. Q., Mohamed, E. A., Abdel Wahed, M. S. M., Seliem, M. K. and Sillanpӓӓ, M., 2017. Adsorption characteristics of Na-A zeolites synthesized from Egyptian kaolinite for manganese in aqueous solutions: Response surface modeling and optimization, Applied Clay Science, 140, pp. 17-24. Doi:10.1016/j.clay.2017.01.027
  26. Bessa, R. D. A., Costa, L. D. S., Oliveira, C. P., Bohn, F., do Nascimento, R. F., Sasaki, J. M. and Loiola, A. R., 2017. Kaolin-based magnetic zeolites A and P as water softeners, Microporous and Mesoporous Materials, 245, pp. 64-72. Doi:10.1016/j.micromeso.2017.03.004
  27. Zeng, P., Guo, X., Zhu, X., Guo, Q., Wang, Y., Ren, S. and Shen, B., 2017. On the synthesis and catalytic cracking properties of Al-ITQ-13 zeolites, Microporous and Mesoporous Materials, 246, pp. 186-192. Doi:10.1016/j.micromeso.2017.03.033
  28. Akhigbe, L., Ouki, S. and Saroj, D., 2016. Disinfection and removal performance for Escherichia coli and heavy metals by silver-modified zeolite in a fixed bed column, Chemical Engineering Journal, 295, pp. 92-98. Doi:10.1016/j.cej.2016.03.020
  29. Visa, M., 2016. Synthesis and characterization of new zeolite materials obtained from fly ash for heavy metals removal in advanced wastewater treatment, Powder Technology, 294, pp. 338-347. Doi:10.1016/j.powtec.2016.02.019
  30. Irani, M., Amjadi, M. and Mousavian, M. A., 2011. Comparative study of lead sorption onto natural perlite, dolomite and diatomite, Chemical Engineering Journal, 178, pp. 317-323. Doi:10.1016/j.cej.2011.10.011
  31. Wang, S. and Peng, Y., 2010. Natural zeolites as effective adsorbents in water and wastewater treatment, Chemical Engineering Journal, 156(1), pp. 11-24. Doi:10.1016/j.cej.2009.10.029
  32. Yurekli, Y., 2016. Removal of heavy metals in wastewater by using zeolite nano-particles impregnated polysulfone membranes, Journal of Hazardous Materials, 309, pp. 53-64. Doi:10.1016/j.jhazmat.2016.01.064
  33. Braschi, I., Blasioli, S., Buscaroli, E., Montecchio, D. and Martucci, A., 2016. Physicochemical regeneration of high silica zeolite Y used to clean-up water polluted with sulfonamide antibiotics, Journal of Environmental Sciences (China), 43, pp. 302-312. Doi:10.1016/j.jes.2015.07.017
  34. El-Mekkawi, D. M. and Selim, M. M., 2014. Removal of Pb2+ from water by using Na-Y zeolites prepared from Egyptian kaolins collected from different sources, Journal of Environmental Chemical Engineering, 2(1), pp. 723-730. Doi:10.1016/j.jece.2013.11.014
  35. Alizadeh, M. and Sadrameli, S. M., 2018. Numerical modeling and optimization of thermal comfort in building: Central composite design and CFD Simulation, Energy and Buildings, 164, pp. 187-202. Doi: 10.1016/j.enbuild.2018.01.006
  36. Ren, Y., Abbood, H. A., He, F., Peng, H. and Huang, K., 2013. Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: Preparation, characterization, and application in heavy metal adsorption, Chemical Engineering Journal, 226, pp. 300-311. Doi: 10.1016/j.cej.2013.04.059
  37. Kulkarni, S., Dhokpande, S. and Kaware, J., 2014. A Review on Isotherms and Kinetics of Heavy Metal Removal, International Journal of Ethics in Engineering & Management Education, 1(2).  
  38. Vold, I. M. N., Varum, K. M., Guibal, E. and Smidsrod, O., 2003. Binding of ions to chitosan—selectivity studies, Carbohydr. Polym., 54 pp. 471. Doi: 10.1016/j.carbpol.2003.07.001
  39. Varma, A. J., Deshpande, S. V. and Kennedy, J. F., 2004. Metal complexation by chitosan and its derivatives: a review, Carbohydrate Polymers, 55, pp. 77-93. Doi: 10.1016/j.carbpol.2003.08.005
  40. Ngah, W. S. W., Endud, C. S. and Mayanar, R., 2002. Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads, Reactive & Functional Polymers, 50, pp. 181-190.
  41. Zhang, S., Zhou, Y., Nie, W., Song, L. and Zhang, T., 2012. Preparation of uniform magnetic chitosan microcapsules and their application in adsorbing copper ion(II) and chromium Ion(III), Industrial & Engineering Chemistry Research., 51, pp. 14099-14106.
  42. Kannamba, B., Reddy, K. L. and AppaRao, B. V., 2010. Removal of Cu(II) from aqueous solutions using chemically modified chitosan, Journal of Hazardous Materials, 175, pp. 939-948. Doi: 10.1016/j.jhazmat.2009.10.098
  43. Chen, Y. and Wang, J., 2011. Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu(II) removal, Chemical Engineering Journal, 168, pp. 286-292. Doi: 10.1016/j.cej.2011.01.006
  44. Zhu, Y. H., Hu, J. and Wang, J. L., 2012. Competitive adsorption of Pb(II), Cu (II) and Zn (II) onto xanthate-modified magnetic chitosan, Journal of Hazardous Materials, 221–222, pp. 155-161. Doi: 10.1016/j.jhazmat.2012.04.026
  45. Wu, Z.-C., Wang, Z.-Z., Liu, J., Yin, J.-H. and Kuang, S.-P., 2015. A new porous magnetic chitosan modified by melamine for fast and efficient adsorption of Cu (II) ions, International Journal of Biological Macromolecules, 81, pp. 838-846. Doi: 10.1016/j.ijbiomac.2015.09.020
  46. Zhao, L. Q., Chang, X. L., Liao, R., Zhang, X. L., Xie, J. R., Yu, B. W., Wu, R. H., Wan, R. J. and Yang, S. T., 2014. Facile hydrothermal preparation of S-doped Fe3O4@C nanoparticles for Cu2+ removal, Materials Letters, 135 pp. 154-157. Doi: 10.1016/j.matlet.2014.07.166
  47. Zhang, G., Qu, R., Sun, C., Ji, C., Chen, H., Wang, C. and Niu, Y., 2008. Adsorption for metal ions of chitosan coated cotton fiber, Journal of Applied Polymer Science, 110, pp. 2321-2327. Doi: 10.1002/app.27515
  48. Mi, F.-L., Wu, S.-J. and Lin, F.-M., 2015. Adsorption of copper (II) ions by a chitosan-oxalate complex biosorbent, International Journal of Biological Macromolecules, 72, pp. 136-144.
  49. Zhou, L. M., Wang, Y. P., Liu, Z. R. and Huang, Q. W., 2009. Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres, Journal of Hazardous Materials, 161, pp. 995-1002. Doi: 10.1016/j.jhazmat.2008.04.078
  50. Luo, X. G., Zeng, J., Liu, S. L. and Zhang, L. N., 2015. An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system: magnetic chitosan/cellulose microspheres, Bioresoure Technology, 194, pp. 403-406. Doi: 10.1016/j.biortech.2015.07.044
  51. Meng, Y. Y., Chen, D. Y., Sun, Y. T., Jiao, D. L., Zeng, D. C. and Liu, Z. W., 2015. Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method, Applied Surface Science, 324, pp.745-750. Doi: 10.1016/j.apsusc.2014.11.028
  52. Yan, H., Yang, L., Yang, Z., Yang, H., Lia, A. and Cheng, R., 2012. Preparation of chitosan/poly(acrylic acid) magnetic composite microspheres and applications in the removal of copper(II) ions from aqueous solutions, Journal of Hazardous Material, 229–230, pp. 371-380. Doi: 10.1016/j.jhazmat.2012.06.014
  53. Li, J., Jiang, B., Liu, Y., Qiu, C., Hu, J., Qian, G., Guo, W. and Ngo, H. H., 2017. Preparation and adsorption properties of magnetic chitosan composite adsorbent for Cu2+ removal, Journal of Cleaner Production, 158, pp. 51-58. Doi: 10.1016/j.jclepro.2017.04.156
  54. Wu, S.-P., Dai, X.-Z., Kan, J.-R., Shilong, F.-D. and Zhu, M.-Y., 2017. Fabrication of carboxymethyl chitosan–hemicellulose resin for adsorptive removal of heavy metals from wastewater, Chinese Chemical Letters, 28, pp. 625–632. Doi: 10.1016/j.cclet.2016.11.015
  55. Chen, B., Zhao, H. and Chen, S., 2019. A magnetically recyclable chitosan composite adsorbent functionalized with EDTA for simultaneous capture of anionic dye and heavy metals in complex wastewater, Chemical Engineering Journal, 356, pp. 69-80. Doi: 10.1016/j.cej.2018.08.222