The Effect of Various Concentrations of Tetra-n-butylammonium Fluoride on the Dissociation Enthalpy of Gas Hydrates

Document Type : Research Note


Department of Chemical Engineering, University of Bojnord, Bojnord, Iran


Semiclathrate hydrate formers such as tetra-n-butylammonium bromide (TBAB), chloride (TBAC) and fluoride (TBAF) are promising compounds that mild the thermodynamic conditions of gas hydrates, considerably. The Clausius-Clapeyron equation is employed in this manuscript to calculate the dissociation enthalpies of methane/carbon dioxide/nitrogen + TBAF semiclathrate hydrates. A 460 cm3 stirred batch reactor was used to measure the phase equilibria of gas + TBAF semiclathrate hydrates at various concentrations of tetra-n-butylammonium fluoride. The dissociation P-T data were obtained using an isochoric pressure-search method in the temperature range of 275.15 to 304.7 K and the pressure range of 0.53 to 10.24 MPa at 0.0 - 0.4482 mass fraction of TBAF. Investigating the obtained dissociation data showed that the addition of TBAF to the solution increases the amount of dissociation enthalpy of semiclathrate hydrates per mole of the hydrated gas. Increasing the mass fraction of tetra-n-butylammonium fluoride, showed a straight relation with the amount of dissociation enthalpy per mole of hydrated gas.


Main Subjects

  1. Sloan, J.E.D. and K.A. Koh, 2008. Clathrate Hydrates of Natural Gases. CRC Press, Taylor & Francis Group.
  2. Hammerschmidt, E., 1934. Formation of Gas Hydrates in Natural Gas Transmission Lines. Industrial & Engineering Chemistry, 26(8): 851-855. Doi:10.1021/ie50296a010
  3. Carroll, J., 2020. Natural Gas Hydrates: A Guide for Engineers. Gulf Professional Publishing.
  4. Cao, G., Y. Bai, X. Chen, X. Nan, Q. Cheng, Y. Sui and Z. Wang, 2021. Hydrate Prevention Based on Convection and Diffusion in Alternate Injection Wells of Carbon Dioxide and Water. Case Studies in Thermal Engineering, 24100858. Doi:10.1016/j.csite.2021.100858
  5. Qasim, A., M.S. Khan, B. Lal and A.M. Shariff, 2019. A Perspective on Dual Purpose Gas Hydrate and Corrosion Inhibitors for Flow Assurance. Journal of Petroleum Science and Engineering, 183106418. Doi:10.1016/j.petrol.2019.106418
  6. Choudhary, N., S. Das, S. Roy and R. Kumar, 2016. Effect of Polyvinylpyrrolidone at Methane Hydrate-Liquid Water Interface. Application in Flow Assurance and Natural Gas Hydrate Exploitation. Fuel, 186613-622. Doi:10.1016/j.fuel.2016.09.004
  7. Qureshi, M.F., M. Atilhan, T. Altamash, M. Tariq, M. Khraisheh, S. Aparicio and B. Tohidi, 2016. Gas Hydrate Prevention and Flow Assurance by Using Mixtures of Ionic Liquids and Synergent Compounds: Combined Kinetics and Thermodynamic Approach. Energy & Fuels, 30(4): 3541-3548. Doi:10.1021/acs.energyfuels.5b03001
  8. Jahangiri, A., A. Mohammadi and F. Salimi, 2017. The Effect of a Teg Additive on Hydrate Formation. Petroleum Science and Technology, 35(11): 1154-1159. Doi:10.1080/10916466.2017.1314302
  9. Ge, B.-B., X.-Y. Li, D.-L. Zhong and Y.-Y. Lu, 2021. Investigation of Natural Gas Storage and Transportation by Gas Hydrate Formation in the Presence of Bio-Surfactant Sulfonated Lignin. Energy, 122665. Doi:10.1016/
  10. Pahlavanzadeh, H., A.M. Javidani, H. Ganji and A. Mohammadi, 2020. Investigation of the Effect of Nacl on the Kinetics of R410a Hydrate Formation in the Presence and Absence of Cyclopentane with Potential Application in Hydrate-Based Desalination. Industrial & Engineering Chemistry Research, 59(31): 14115-14125. Doi:10.1021/acs.iecr.0c02504
  11. Mohammadi, A., 2020. The Roles Tbaf and Sds on the Kinetics of Methane Hydrate Formation as a Cold Storage Material. Journal of Molecular Liquids, 309113175. Doi:10.1016/j.molliq.2020.113175
  12. Mohammadi, A. and A. Jodat, 2019. Investigation of the Kinetics of Tbab+ Carbon Dioxide Semiclathrate Hydrate in Presence of Tween 80 as a Cold Storage Material. Journal of Molecular Liquids, 293111433. Doi:10.1016/j.molliq.2019.111433
  13. Hassanpouryouzband, A., J. Yang, B. Tohidi, E. Chuvilin, V. Istomin, B. Bukhanov and A. Cheremisin, 2018. Co2 Capture by Injection of Flue Gas or Co2–N2 Mixtures into Hydrate Reservoirs: Dependence of Co2 Capture Efficiency on Gas Hydrate Reservoir Conditions. Environmental Science & Technology, 52(7): 4324-4330. Doi:10.1021/acs.est.7b05784
  14. Mohammadi, A., M. Pakzad, A. Mohammadi and A. Jahangiri, 2018. Kinetics of (Tbaf+ CO2) Semi-Clathrate Hydrate Formation in the Presence and Absence of Sds. Petroleum science, 15(2): 375-384. Doi:10.1021/je00001a020
  15. Mohammadi, A., M. Manteghian, A. Haghtalab, A.H. Mohammadi and M. Rahmati-Abkenar, 2014. Kinetic Study of Carbon Dioxide Hydrate Formation in Presence of Silver Nanoparticles and Sds. Chemical Engineering Journal, 237387-395. Doi:10.1016/j.cej.2013.09.026
  16. Abedi-Farizhendi, S., M. Hosseini, M. Iranshahi, A. Mohammadi, M. Manteghian and A.H. Mohammadi, 2019. Kinetics of Co2 Hydrate Formation in Coffee Aqueous Solution: Application in Coffee Concentration. Journal of Dispersion Science and Technology, Doi:10.1080/01932691.2019.1614031
  17. Mohammadi, A., N. Babakhanpour, A.M. Javidani and G. Ahmadi, 2021. Corn’s Dextrin, a Novel Environmentally Friendly Promoter of Methane Hydrate Formation. Journal of Molecular Liquids, 336116855. Doi:10.1016/j.molliq.2021.116855
  18. Wang, X., F. Zhang and W. LipiƄski, 2020. Carbon Dioxide Hydrates for Cold Thermal Energy Storage: A Review. Solar Energy, 21111-30. Doi:10.1016/j.solener.2020.09.035
  19. Cheng, C., F. Wang, Y. Tian, X. Wu, J. Zheng, J. Zhang, L. Li, P. Yang and J. Zhao, 2020. Review and Prospects of Hydrate Cold Storage Technology. Renewable and Sustainable Energy Reviews, 117109492. Doi:10.1016/j.rser.2019.109492
  20. Delahaye, A., L. Fournaison, S. Marinhas, I. Chatti, J.-P. Petitet, D. Dalmazzone and W. Fürst, 2006. Effect of Thf on Equilibrium Pressure and Dissociation Enthalpy of Co2 Hydrates Applied to Secondary Refrigeration. Industrial & Engineering Chemistry Research, 45(1): 391-397. Doi:10.1021/ie050356p
  21. Deschamps, J. and D. Dalmazzone, 2009. Dissociation Enthalpies and Phase Equilibrium for Tbab Semi-Clathrate Hydrates of N2, Co2, N2+ Co2 and Ch4+ Co2. Journal of Thermal Analysis and Calorimetry, 98(1): 113-118. Doi:10.1007/s10973-009-0399-3
  22. Hashimoto, S., T. Makino, Y. Inoue and K. Ohgaki, 2010. Three-Phase Equilibrium Relations and Hydrate Dissociation Enthalpies for Hydrofluorocarbon Hydrate Systems: Hfc-134a, -125, and -143a Hydrates. Journal of Chemical & Engineering Data, 55(11): 4951-4955. Doi:10.1021/je100528u
  23. Kang, S.-P., H. Lee and B.-J. Ryu, 2001. Enthalpies of Dissociation of Clathrate Hydrates of Carbon Dioxide, Nitrogen,(Carbon Dioxide+ Nitrogen), and (Carbon Dioxide+ Nitrogen+ Tetrahydrofuran). The Journal of Chemical Thermodynamics, 33(5): 513-521. Doi:10.1006/jcht.2000.0765
  24. Lin, W., A. Delahaye and L. Fournaison, 2008. Phase Equilibrium and Dissociation Enthalpy for Semi-Clathrate Hydrate of Co2 +Tbab. Fluid Phase Equilibria, 264(1–2): 220-227. Doi:10.1016/j.fluid.2007.11.020
  25. Qing, S.-L., D.-L. Zhong, D.-T. Yi, Y.-Y. Lu and Z. Li, 2018. Phase Equilibria and Dissociation Enthalpies for Tetra-N-Butylammonium Chloride Semiclathrate Hydrates Formed with Co2, Ch4, and Co2+Ch4. The Journal of Chemical Thermodynamics, 11754-59. Doi:10.1016/j.jct.2017.07.039
  26. Mu, L. and N. von Solms, 2018. Hydrate Thermal Dissociation Behavior and Dissociation Enthalpies in Methane-Carbon Dioxide Swapping Process. The Journal of Chemical Thermodynamics, 11733-42. Doi:10.1016/j.jct.2017.08.018
  27. Fowler, D.L., W.V. Loebenstein, D.B. Pall and C.A. Kraus, 1940. Some Unusual Hydrates of Quaternary Ammonium Salts. Journal of the American Chemical Society, 62(5): 1140-1142. Doi:10.1021/ja01862a039
  28. Jeffrey, G.A. and R.K. McMullan, 1967. The Clathrate Hydrates, in Progress in Inorganic Chemistry. John Wiley: New York. p. 43-108.
  29. Makino, T., T. Yamamoto, K. Nagata, H. Sakamoto, S. Hashimoto, T. Sugahara and K. Ohgaki, 2010. Thermodynamic Stabilities of Tetra-N-Butyl Ammonium Chloride + H2, N2, Ch4, Co2, or C2h6 Semiclathrate Hydrate Systems. Journal of Chemical & Engineering Data, 55(2): 839-841. Doi:10.1021/je9004883
  30. Fukumoto, A., L.P.S. Silva, P. Paricaud, D. Dalmazzone and W. Fürst, 2015. Modeling of the Dissociation Conditions of H2+ Co2 Semiclathrate Hydrate Formed with Tbab, Tbac, Tbaf, Tbpb, and Tbno3 Salts. Application to CO2 Capture from Syngas. International Journal of Hydrogen Energy, 40(30): 9254-9266. Doi: 10.1016/j.ijhydene.2015.05.139
  31. Kamran-Pirzaman, A., H. Pahlavanzadeh and A.H. Mohammadi, 2013. Hydrate Phase Equilibria of Furan, Acetone, 1, 4-Dioxane, Tbac and Tbaf. The Journal of Chemical Thermodynamics, 64151-158. Doi:10.1016/j.jct.2013.04.012
  32. Sun, Z.-G. and C.-G. Liu, 2012. Equilibrium Conditions of Methane in Semiclathrate Hydrates of Tetra-N-Butylammonium Chloride. Journal of Chemical & Engineering Data, 57(3): 978-981. Doi:10.1021/je201264g
  33. Oshima, M., M. Kida, Y. Jin and J. Nagao, 2015. Dissociation Behaviour of (Tetra-N-Butylammonium Bromide+Tetra-N-Butylammonium Chloride) Mixed Semiclathrate Hydrate Systems. The Journal of Chemical Thermodynamics, 90277-281. Doi:10.1016/j.jct.2015.07.009
  34. Pahlavanzadeh, H., S. Mohammadi and A.H. Mohammadi, 2019. Experimental Measurement and Thermodynamic Modeling of Hydrate Dissociation Conditions for (CO2 + Tbac + Cyclopentane + Water) System. The Journal of Chemical Thermodynamics, 105979. Doi:10.1016/j.jct.2019.105979
  35. Sun, Z.-G., L.-J. Jiao, Z.-G. Zhao, G.-L. Wang and H.-F. Huang, 2014. Phase Equilibrium Conditions of Semi-Calthrate Hydrates of (Tetra-N-Butyl Ammonium Chloride+Carbon Dioxide). The Journal of Chemical Thermodynamics, 75116-118. Doi:10.1016/j.jct.2014.02.020
  36. Wu, W.-Z., J.-A. Guan, X.-D. Shen, L.-L. Shi, Z. Long, X.-B. Zhou and D.-Q. Liang, 2016. Phase Equilibrium Data of Methane Hydrate in the Aqueous Solutions of Additive Mixtures (Thf+ Tbac). Journal of Chemical & Engineering Data, 61(10): 3498-3503. Doi:10.1021/acs.jced.6b00405
  37. Ye, N. and P. Zhang, 2014. Phase Equilibrium and Morphology Characteristics of Hydrates Formed by Tetra-N-Butyl Ammonium Chloride and Tetra-N-Butyl Phosphonium Chloride with and without Co2. Fluid Phase Equilibria, 361208-214. Doi:10.1016/j.fluid.2013.10.055
  38. Li, D.-L., J.-W. Du, S.-S. Fan, D.-Q. Liang, X.-S. Li and N.-S. Huang, 2007. Clathrate Dissociation Conditions for Methane+ Tetra-N-Butyl Ammonium Bromide (Tbab)+ Water. Journal of Chemical & Engineering Data, 52(5): 1916-1918. Doi:10.1021/je700229e
  39. Lin, W., D. Dalmazzone, W. Fürst, A. Delahaye, L. Fournaison and P. Clain, 2014. Thermodynamic Properties of Semiclathrate Hydrates Formed from the Tbab+Tbpb+Water and Co2+Tbab+Tbpb+Water Systems. Fluid Phase Equilibria, 37263-68. Doi:10.1016/j.fluid.2014.03.026
  40. Xia, Z., Z. Li, Z. Chen, X. Li, Y. Zhang, K. Yan and Q. Lv, 2019. Co2/H2/H2o Hydrate Formation with Tbab and Nanoporous Materials. Energy Procedia, 1585866-5871. Doi:10.1016/j.egypro.2019.01.539
  41. Youssef, Z., L. Hanu, T. Kappels, A. Delahaye, L. Fournaison, C. Zambrana and C. Pollerberg, 2014. Experimental Study of Single Co2 and Mixed Co2 + Tbab Hydrate Formation and Dissociation in Oil-in-Water Emulsion. International Journal of Refrigeration, 46207-218. Doi:10.1016/j.ijrefrig.2014.04.013
  42. Arai, Y., Y. Yamauchi, H. Tokutomi, F. Endo, A. Hotta, S. Alavi and R. Ohmura, 2018. Thermophysical Property Measurements of Tetrabutylphosphonium Acetate (Tbpace) Ionic Semiclathrate Hydrate as Thermal Energy Storage Medium for General Air Conditioning Systems. International Journal of Refrigeration, 88102-107. Doi:10.1016/j.ijrefrig.2017.12.020
  43. Mohammadi, A., M. Manteghian, A.H. Mohammadi and A. Jahangiri, 2017. Induction Time, Storage Capacity, and Rate of Methane Hydrate Formation in the Presence of Sds and Silver Nanoparticles. Chemical Engineering Communications, 204(12): 1420-1427. Doi:10.1080/00986445.2017.1366903
  44. Javidani, A.M., S. Abedi-Farizhendi, A. Mohammadi, A.H. Mohammadi, H. Hassan and H. Pahlavanzadeh, 2020. Experimental Study and Kinetic Modeling of R410a Hydrate Formation in Presence of Sds, Tween 20, and Graphene Oxide Nanosheets with Application in Cold Storage. Journal of Molecular Liquids, 304112665. Doi:10.1016/j.molliq.2020.112665
  45. Sloan, E. and F. Fleyfel, 1992. Hydrate Dissociation Enthalpy and Guest Size. Fluid Phase Equilibria, 76123-140.
  46. Smith, J.M., Introduction to Chemical Engineering Thermodynamics. 1950, ACS Publications.
  47. Peng, D.Y. and D.B. Robinson, 1976. A New Two Constant Equation of State. Ind. Eng. Chem. Fundam, 1559-64. Doi:10.1021/i160057a011
  48. Lee, S., Y. Lee, S. Park, Y. Kim, J.D. Lee and Y. Seo, 2012. Thermodynamic and Spectroscopic Identification of Guest Gas Enclathration in the Double Tetra-N-Butylammonium Fluoride Semiclathrates. The Journal of Physical Chemistry B, 116(30): 9075-9081. Doi:10.1021/jp302647c
  49. Lee, S., Y. Lee, S. Park and Y. Seo, 2010. Phase Equilibria of Semiclathrate Hydrate for Nitrogen in the Presence of Tetra-N-Butylammonium Bromide and Fluoride. Journal of Chemical & Engineering Data, 55(12): 5883-5886. Doi:10.1021/je100886b
  50. van Cleeff, A. and G.A.M. Diepen, 1960. Gas Hydrates of Nitrogen and Oxygen. Recueil des Travaux Chimiques des Pays-Bas, 79(6): 582-586. Doi:10.1002/recl.19600790606
  51. Mohammadi, A., M. Manteghian and A.H. Mohammadi, 2013. Dissociation Data of Semiclathrate Hydrates for the Systems of Tetra-N-Butylammonium Fluoride (Tbaf)+ Methane+ Water, Tbaf+ Carbon Dioxide+ Water, and Tbaf+ Nitrogen+ Water. Journal of Chemical & Engineering Data, 58(12): 3545-3550. Doi:10.1021/je4008519