Document Type : Original Article

Authors

1 Department of Chemical Engineering, Razi University, Kermanshah, Iran

2 Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran

Abstract

The nanofluid-based gas hydrate formation process employing copper oxide (CuO) nanoparticles have been experimentally investigated in this work. Different concentrations of nanofluids are injected into the reactor at the operating condition of 29 bar, 274.15 K, and impeller speed of 100 rpm. It was observed that the kinetics of the carbon dioxide hydrate formation process was greatly affected by the nanoparticles. The remarkable point was that at a very low concentration of 20 ppm, a considerable improvement on the carbon dioxide hydrate formation kinetic without using any surfactant was obtained. At the concentration of 20 ppm, the values of the initial rate of hydrate formation, growth time, and induction time were 0.0495, 194.5, and 4.4 min, respectively, which these results can be of great importance for the use of carbon dioxide hydrate in various industries. The results indicated that the kinetics of gas hydrate formation was also severely influenced by the impeller speed and initial gas pressure. The rate of CO2 captured in the hydrate crystalline lattice is also modeled by the first-order kinetic model. It was seen that this model can be used to predict the rate of hydrate formation with considerable accuracy.

Keywords

Main Subjects

  1. Ganguly, A. and Ghosh, S., 2011. “A Review of Ventilation and Cooling Technologies in Agricultural Greenhouse Application”. Iranian (Iranica) Journal of Energy and Environment, 2(1), pp.32-46. 2079-2115
  2. Sarshar, M., Esmaeilzadeh, F. and Fathikalajahi, J., 2009. “Study of Capturing Emitted CO2 in the Form of Hydrates in a Tubular Reactor”. Chemical Engineering Communications, 196(11), pp.1348-1365. Doi: 10.1080/00986440902900832
  3. ZareNezhad, B. and Montazeri, V., 2014. “Development of a High Efficient Gas to Hydrate (GTH) Conversion Process Using SDS Kinetic Promoter for Maximizing the CO2 Recovery with Minimum Energy Consumption”. Energy Conversion and Management, 79, pp.289-293. Doi: 10.1016/j.enconman.2013.12.030
  4. Kumar, A., Sakpal, T., Linga, P. and Kumar, R., 2013. “Influence of Contact Medium and Surfactants on Carbon Dioxide Clathrate Hydrate Kinetics”. Fuel, 105, pp.664-671. Doi: 10.1016/j.fuel.2012.10.031
  5. Molokitina, N. S., Nesterov, A. N., Podenko, L. S. and Reshetnikov, A. M., 2019. “Carbon Dioxide Hydrate Formation with SDS: Further Insights into Mechanism of Gas Hydrate Growth in the Presence of Surfactant”. Fuel, 235, pp.1400-1411. Doi: 10.1016/j.fuel.2018.08.126
  6. Torré, J.-P., Dicharry, C., Ricaurte, M., Daniel-David, D. and Broseta, D., 2011. “CO2 Capture by Hydrate Formation in Quiescent Conditions: In Search of Efficient Kinetic Additives”. Energy Procedia, 4, pp.621-628. Doi: 10.1016/j.egypro.2011.01.097
  7. Partoon, B., Malik, S. N. A., Azemi, M. H. and Sabil, K. M., 2013. “Experimental Investigations on the Potential of SDS as Low‐Dosage Promoter for Carbon Dioxide Hydrate Formation”. Asia‐Pacific Journal of Chemical Engineering, 8(6), pp.916-921. Doi: 10.1002/apj.1736
  8. Joshi, A., Sangwai, J. S., Das, K. and Sami, N. A., 2013. “Experimental Investigations on the Phase Equilibrium of Semiclathrate Hydrates of Carbon Dioxide in TBAB with Small Amount of Surfactant”. International Journal of Energy and Environmental Engineering, 4(1), pp.1-8. Doi: 10.1186/2251-6832-4-11
  9. Kim, S., Lee, S. H. and Kang, Y. T., 2017. “Characteristics of CO2 Hydrate Formation/Dissociation in H2O+ THF Aqueous Solution and Estimation of CO2 Emission Reduction by District Cooling Application”. Energy, 120, pp.362-373. Doi: 10.1016/j.energy.2016.11.086
  10. Nguyen, N. N., Nguyen, A. V., Nguyen, K. T., Rintoul, L. and Dang, L. X., 2016. “Unexpected Inhibition of CO2 Gas Hydrate Formation in Dilute Tbab Solutions and the Critical Role of Interfacial Water Structure”. Fuel, 185, pp.517-523. Doi: 10.1016/j.fuel.2016.08.006
  11. da Silva Lirio, C. F., Pessoa, F. L. P. and Uller, A. M. C., 2013. “Storage Capacity of Carbon Dioxide Hydrates in the Presence of Sodium Dodecyl Sulfate (SDS) and Tetrahydrofuran (THF)”. Chemical Engineering Science, 96, pp.118-123. Doi: 10.1016/j.ces.2012.10.022
  12. Askari Agh Masjed, N. and Pahlavan Zadeh, H., 2019. “Experimental Investigation toward the Kinetic Study of Methane Hydrate Formation in the Presence of THF+ SDS”. Iranian Journal of Chemistry and Chemical Engineering, 40(1), pp.261-273. Doi: 1021-9986/2021/1/261-273
  13. Choi, J. W., Chung, J. T. and Kang, Y. T., 2014. “CO2 Hydrate Formation at Atmospheric Pressure Using High Efficiency Absorbent and Surfactants”. Energy, 78, pp.869-876. Doi: 10.1016/j.energy.2014.10.081
  14. Torré, J.-P., Ricaurte, M., Dicharry, C. and Broseta, D., 2012. “CO2 Enclathration in the Presence of Water-Soluble Hydrate Promoters: Hydrate Phase Equilibria and Kinetic Studies in Quiescent Conditions”. Chemical Engineering Science, 82, pp.1-13. Doi: 10.1016/j.ces.2012.07.025
  15. Ho, L. C., Babu, P., Kumar, R. and Linga, P., 2013. “HBGS (Hydrate Based Gas Separation) Process for Carbon Dioxide Capture Employing an Unstirred Reactor with Cyclopentane”. Energy, 63, pp.252-259. Doi: 10.1016/j.energy.2013.10.031
  16. Mohammadi, A., Pakzad, M., Mohammadi, A. and Jahangiri, A., 2018. “Kinetics of (TBAF+CO2) Semi-Clathrate Hydrate Formation in the Presence and Absence of SDS”. Petroleum Science, 15(2), pp.375-384. Doi: 10.1007/s12182-018-0221-6
  17. Mousavi, S. E. and Bozorgian, A., 2020. “Investigation the Kinetics of CO2 Hydrate Formation in the Water System+ CTAB+ TBAF+ ZnO”. International Journal of New Chemistry, 7(3), pp.195-219. Doi: 10.22034/IJNC.2020.121743.1096
  18. Yang, M., Liu, W., Song, Y., Ruan, X., Wang, X., Zhao, J., Jiang, L. and Li, Q., 2013. “Effects of Additive Mixture (THF/SDS) on the Thermodynamic and Kinetic Properties of CO2/H2 Hydrate in Porous Media”. Industrial and Engineering Chemistry Research, 52(13), pp.4911-4918. Doi: 10.1021/ie303280e
  19. Yu, Y.-s., Xu, C.-g. and Li, X.-s., 2018. “Evaluation of CO2 Hydrate Formation from Mixture of Graphite Nanoparticle and Sodium Dodecyl Benzene Sulfonate”. Journal of Industrial and Engineering Chemistry, 59, pp.64-69. Doi: 10.1016/j.jiec.2017.10.007
  20. Zhou, S.-d., Yu, Y.-s., Zhao, M.-m., Wang, S.-l. and Zhang, G.-Z., 2014. “Effect of Graphite Nanoparticles on Promoting CO2 Hydrate Formation”. Energy & Fuels, 28(7), pp.4694-4698. Doi: 10.1021/ef5000886
  21. ZareNezhad, B. and Montazeri, V., 2016. “Nanofluid-Assisted Gas to Hydrate (GTH) Energy Conversion for Promoting CO2 Recovery and Sequestration Processes in the Petroleum Industry”. Petroleum Science and Technology, 34(1), pp.37-43. Doi: 10.1080/10916466.2015.1115872
  22. Li, A., Luo, D., Jiang, L., Wang, J. and Zhou, Y., 2019. “Experimental Study on CO2 Hydrate Formation in the Presence of TiO2, SiO2, Mwnts Nanoparticles”. Separation Science and Technology, 54(15), pp.2498-2506. Doi: 10.1080/01496395.2018.1548481
  23. Pasieka, J., Jorge, L., Coulombe, S. and Servio, P., 2015. “Effects of as-Produced and Amine-Functionalized Multi-Wall Carbon Nanotubes on Carbon Dioxide Hydrate Formation”. Energy & Fuels, 29(8), pp.5259-5266. Doi: 10.1021/acs.energyfuels.5b01036
  24. Khalili, S., Asghar Ghoreyshi, A. and Jahanshahi, M., 2012. “CO2 Separation from Syngas by Multiwall Carbon Nanotube”. Iranian (Iranica) Journal of Energy and Environment, 3(1), Doi: 10.5829/idosi.ijee.2012.03.01.0269
  25. Hassan, H., Javidani, A. M., Mohammadi, A., Pahlavanzadeh, H., Abedi-Farizhendi, S. and Mohammadi, A. H., 2021. “Effects of Graphene Oxide Nanosheets and Al2O3 Nanoparticles on CO2 Uptake in Semi‐Clathrate Hydrates”. Chemical Engineering and Technology, 44(1), pp.48-57. Doi: 10.1002/ceat.202000286
  26. Zhou, S., Jiang, K., Zhao, Y., Chi, Y., Wang, S. and Zhang, G., 2018. “Experimental Investigation of CO2 Hydrate Formation in the Water Containing Graphite Nanoparticles and Tetra-N-Butyl Ammonium Bromide”. Journal of Chemical and Engineering Data, 63(2), pp.389-394. Doi: 10.1021/acs.jced.7b00785
  27. Firoozabadi, S. R. and Bonyadi, M., 2020. “A Comparative Study on the Effects of Fe3O4 Nanofluid, SDS and CTAB Aqueous Solutions on the CO2 Hydrate Formation”. Journal of Molecular Liquids, 300, pp.112251. Doi: 10.1016/j.molliq.2019.112251
  28. Bozorgian, A., 2020. “Investigation of the Effect of Zinc Oxide Nano-Particles and Cationic Surfactants on Carbon Dioxide Storage Capacity”. Advanced Journal of Chemistry-Section B, 3(1), pp.54-61. Doi: 10.22034/ajcb.2021.118942
  29. Montazeri, V., Rahimi, M. and Zarenezhad, B., 2019. “Energy Saving in Carbon Dioxide Hydrate Formation Process Using Boehmite Nanoparticles”. Korean Journal of Chemical Engineering, 36(11), pp.1859-1868. Doi: 10.1007/s11814-019-0375-y
  30. He, Y. and Wang, F., 2018. “Hydrate-Based CO2 Capture: Kinetic Improvement Via Graphene-Carried–SO3− and Ag Nanoparticles”. Journal of Materials Chemistry A, 6(45), pp.22619-22625. Doi: 10.1039/C8TA08785G
  31. Renault-Crispo, J.-S., Coulombe, S. and Servio, P., 2017. “Kinetics of Carbon Dioxide Gas Hydrates with Tetrabutylammonium Bromide and Functionalized Multi-Walled Carbon Nanotubes”. Energy, 128, pp.414-420. Doi: 10.1016/j.energy.2017.04.046
  32. Pivezhani, F., Roosta, H., Dashti, A. and Mazloumi, S. H., 2016. “Investigation of CO2 Hydrate Formation Conditions for Determining the Optimum CO2 Storage Rate and Energy: Modeling and Experimental Study”. Energy, 113, pp.215-226. Doi: 10.1016/j.energy.2016.07.043
  33. Abazari Bahnemiri, H., Oloomi, S. A. A., Mirjalily, S. A. A. and Zare-Shahabadi, A., 2021. “The Role of Nanoparticles and Different Tube Diameter on Thermal Performance in Shell and Helically Coiled Tube Heat Exchangers with Single Phase and Sub-Cooled Boiling Flow”. Iranian (Iranica) Journal of Energy & Environment, 12(4), pp.367-377. Doi: 10.5829/ijee.2021.12.04.10
  34. Coelho, M., Rivas, M., Vilão, G., Nogueira, E. and Iglesias, T., 2019. “Permittivity and Electrical Conductivity of Copper Oxide Nanofluid (12 nm) in Water at Different Temperatures”. The Journal of Chemical Thermodynamics, 132, pp.164-173. Doi: 10.1016/j.jct.2018.12.025
  35. Said, S., Govindaraj, V., Herri, J.-M., Ouabbas, Y., Khodja, M., Belloum, M., Sangwai, J. S. and Nagarajan, R., 2016. “A Study on the Influence of Nanofluids on Gas Hydrate Formation Kinetics and Their Potential: Application to the CO2 Capture Process”. Journal of Natural Gas Science and Engineering, 32, pp.95-108. Doi: 10.1016/j.jngse.2016.04.003
  36. Kim, J. H., Jung, C. W. and Kang, Y. T., 2014. “Mass Transfer Enhancement During CO2 Absorption Process in Methanol/Al2O3 Nanofluids”. International Journal of Heat and Mass Transfer, 76, pp.484-491. Doi: 10.1016/j.ijheatmasstransfer.2014.04.057
  37. Kumar, A., Khatri, D., Lee, J. D. and Kumar, R., 2016. “Crystallization Kinetics for Carbon Dioxide Gas Hydrate in Fixed Bed and Stirred Tank Reactor”. Korean Journal of Chemical Engineering, 33(6), pp.1922-1930. Doi: 10.1007/s11814-016-0040-7
  38. Chun, M.-K. and Lee, H., 1996. “Kinetics of Formation of Carbon Dioxide Clathrate Hydrates”. Korean Journal of Chemical Engineering, 13(6), pp.620-626. Doi: 10.1007/BF02706029