Document Type : Review paper

Author

Department of Energy Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

Abstract

Hydrogen energy has the advantages of low carbon and cleanliness, high energy density, and high conversion efficiency; it is expected to play a pivotal role in Eastern Asia and the MENA region’s energy transition. The research status and development prospects of various technologies in hydrogen production, hydrogen storage, and hydrogen use are analyzed. On this basis, specific technical paths for developing renewable energy and integrated energy service parks coupled with hydrogen energy are proposed. Solid polymer electrolyte (SPE) electrolysis hydrogen production and solid material hydrogen storage are the most potential development in directions of hydrogen production and hydrogen storage. Technologies such as hydrogen fuel cell and natural gas hydrogen mixture in the hydrogen use link should be simultaneously promoted. The organic combination of wind/light-abandoned hydrogen production by electrolysis of water, wind power/photovoltaic off-grid hydrogen production with fuel cell power generation, hydrogen refueling station supply, methanol production, and natural gas hydrogen mixing technology would effectively solve the uneconomical and transportation difficulties of renewable energy hydrogen production. At the same time, hydrogen energy can realize the interconnection of multiple energy networks, and its application prospects in the future integrated energy service parks are very broad.

Keywords

  1. Moriarty, P. and Honnery, D. 2007. “Intermittent renewable energy: The only future source of hydrogen?” International Journal of Hydrogen Energy, 32(12), pp.1616–1624. https://doi.org/10.1016/j.ijhydene.2006.12.008
  2. Aghahosseini, A., Bogdanov, D., Barbosa, L. S. N. S. and Breyer, C. 2019. “Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030.” Renewable and Sustainable Energy Reviews, 105, pp.187–205. https://doi.org/10.1016/j.rser.2019.01.046
  3. da Silva Veras, T., Mozer, T. S., da Costa Rubim Messeder dos Santos, D. and da Silva César, A. 2017. “Hydrogen: Trends, production and characterization of the main process worldwide.” International Journal of Hydrogen Energy, 42(4), pp.2018–2033. https://doi.org/10.1016/j.ijhydene.2016.08.219 
  4. Xianxu, H., Jing, W., Ling, J. and Qingshan, X. 2016. “Review on key technologies and applications of hydrogen energy storage system.” Energy Storage Science and Technology, 5(2), pp.197–203. https://doi.org/10.3969/j.issn.2095-4239.2016.02.011 
  5. Du, J. and Ouyang, D. 2017. “Progress of Chinese electric vehicles industrialization in 2015: A review.” Applied Energy, 188, pp.529–546. https://doi.org/10.1016/j.apenergy.2016.11.129 
  6. Staffell, I., Scamman, D., Velazquez Abad, A., Balcombe, P., Dodds, P. E., Ekins, P., Shah, N. and Ward, K. R. 2019. “The role of hydrogen and fuel cells in the global energy system.” Energy & Environmental Science, 12(2), pp.463–491. https://doi.org/10.1039/C8EE01157E 
  7. Li, Z., Zhang, W., Zhang, R. and Sun, H. 2020. “Development of renewable energy multi-energy complementary hydrogen energy system (A Case Study in China): A review.” Energy Exploration & Exploitation, 38(6), pp.2099–2127. https://doi.org/10.1177/0144598720953512 
  8. Bakenne, A., Nuttall, W. and Kazantzis, N. 2016. “Sankey-Diagram-based insights into the hydrogen economy of today.” International Journal of Hydrogen Energy, 41(19), pp.7744–7753. https://doi.org/10.1016/j.ijhydene.2015.12.216 
  9. Lu, C., Zhang, R., Yang, G., Huang, H., Cheng, J. and Xu, S. 2021. “Study and performance test of 10 kW molten carbonate fuel cell power generation system.” International Journal of Coal Science & Technology, 8(3), pp.368–376. https://doi.org/10.1007/s40789-021-00442-4 
  10. Chen, S. H., Zhang, K., Chang, L. P. and Wang, H. 2019. “Overview of traditional and new hydrogen production methods.” Natural Gas Chemical Industry, 44(2), pp.122–127. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S136403211731242X 
  11. Gesheng, H. U. A. N. G. and LIJinshan, W. 2019. “Status and economic analysis of hydrogen production technology from fossil raw materials.” Chemical Industry and Engineering Progress, 38(12), pp.5217–5224.
  12. Caglayan, D. G., Weber, N., Heinrichs, H. U., Linßen, J., Robinius, M., Kukla, P. A. and Stolten, D. 2020. “Technical potential of salt caverns for hydrogen storage in Europe.” International Journal of Hydrogen Energy, 45(11), pp.6793–6805. https://doi.org/10.1016/j.ijhydene.2019.12.161 
  13. Yu, H. and Yi, B. 2018. “Hydrogen for Energy Storage and Hydrogen Production from Electrolysis.” Chinese Journal of Engineering Science, 20(3), pp.58–65. https://doi.org/10.15302/J-SSCAE-2018.03.009 
  14. Rezaei, M., Salimi, M., Momeni, M. and Mostafaeipour, A. 2018. “Investigation of the socio-economic feasibility of installing wind turbines to produce hydrogen: Case study.” International Journal of Hydrogen Energy, 43(52), pp.23135–23147. https://doi.org/10.1016/j.ijhydene.2018.10.184 
  15. Buttler, A. and Spliethoff, H. 2018. “Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review.” Renewable and Sustainable Energy Reviews, 82, pp.2440–2454. https://doi.org/10.1016/j.rser.2017.09.003 
  16. Götz, M., Lefebvre, J., Mörs, F., McDaniel Koch, A., Graf, F., Bajohr, S., Reimert, R. and Kolb, T. 2016. “Renewable Power-to-Gas: A technological and economic review.” Renewable Energy, 85, pp.1371–1390. https://doi.org/10.1016/j.renene.2015.07.066 
  17. Zhang, N., Chen, H., Ma, X., Shen, S. and Wang, G. 2019. “Research Progress of High Density Solid-state Hydrogen Storage Materials.” Manned Spaceflight, 25, pp.116–121.
  18. Abe, J. O., Popoola, A. P. I., Ajenifuja, E. and Popoola, O. M. 2019. “Hydrogen energy, economy and storage: Review and recommendation.” International Journal of Hydrogen Energy, 44(29), pp.15072–15086. https://doi.org/10.1016/j.ijhydene.2019.04.068 
  19. Liu, H., Xu, L., Liu, S., Sheng, P., Zhao, G., Wang, B., Li, H., Ma, G., Han, Y., Chen, X. and Wang, X. 2017. “Technical indicators for solid-state hydrogen storage systems and hydrogen storage materials for grid-scale hydrogen energy storage application.” Power System Technology, 4(10), pp.3376–3384. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0360319919347299 
  20. Moradi, R. and Groth, K. M. 2019. “Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis.” International Journal of Hydrogen Energy, 44(23), pp.12254–12269. https://doi.org/10.1016/j.ijhydene.2019.03.041 
  21. Sun, M.-B., Wang, Z.-G., Liang, J.-H. and Geng, H. 2008. “Flame Characteristics in Supersonic Combustor with Hydrogen Injection Upstream of Cavity Flameholder.” Journal of Propulsion and Power, 24(4), pp.688–696. https://doi.org/10.2514/1.34970 
  22. Bailera, M., Lisbona, P., Romeo, L. M. and Espatolero, S. 2017. “Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2.” Renewable and Sustainable Energy Reviews, 69, pp.292–312. https://doi.org/10.1016/j.rser.2016.11.130 
  23. Noussan, M., Raimondi, P. P., Scita, R. and Hafner, M. 2020. “The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective.” Sustainability, 13(1), pp.298. https://doi.org/10.3390/su13010298 
  24. Ishaq, H., Dincer, I. and Naterer, G. F. 2018. “Performance investigation of an integrated wind energy system for co-generation of power and hydrogen.” International Journal of Hydrogen Energy, 43(19), pp.9153–9164. https://doi.org/10.1016/j.ijhydene.2018.03.139 
  25. McKenna, R. C., Bchini, Q., Weinand, J. M., Michaelis, J., König, S., Köppel, W. and Fichtner, W. 2018. “The future role of Power-to-Gas in the energy transition: Regional and local techno-economic analyses in Baden-Württemberg.” Applied Energy, 212, pp.386–400. https://doi.org/10.1016/j.apenergy.2017.12.017 
  26. Ghaib, K. and Ben-Fares, F.-Z. 2018. “Power-to-Methane: A state-of-the-art review.” Renewable and Sustainable Energy Reviews, 81, pp.433–446. https://doi.org/10.1016/j.rser.2017.08.004 
  27. Li, J. R., Lin, J., Xiao, J. Y., Song, Y. and Teng, Y. 2020. “Technical and energy consumption comparison of power-to-chemicals (P2X) technologies for renewable energy integration.” Journal of Global Energy Interconnection, 3(01), pp.86–96. 
  28. Li, Z., Guo, P., Han, R. and Sun, H. 2019. “Current status and development trend of wind power generation-based hydrogen production technology.” Energy Exploration & Exploitation, 37(1), pp.5–25. https://doi.org/10.1177/0144598718787294 
  29. Zhigang, S. and Baolian, Y. 2019. “Developing Trend and Present Status of Hydrogen Energy and Fuel Cell Development.” Bulletin of Chinese Academy of Sciences, 34(04), pp.469–477. 
  30. Iris, Ç. and Lam, J. S. L. 2019. “A review of energy efficiency in ports: Operational strategies, technologies and energy management systems.” Renewable and Sustainable Energy Reviews, 112, pp.170–182. https://doi.org/10.1016/j.rser.2019.04.069 
  31. Javed, M. S., Ma, T., Jurasz, J. and Amin, M. Y. 2020. “Solar and wind power generation systems with pumped hydro storage: Review and future perspectives.” Renewable Energy, 148, pp.176–192. https://doi.org/10.1016/j.renene.2019.11.157 
  32. Greiner, C., Korpas, M. and Holen, A. 2007. “A Norwegian case study on the production of hydrogen from wind power.” International Journal of Hydrogen Energy, 32(10–11), pp.1500–1507. https://doi.org/10.1016/j.ijhydene.2006.10.030 
  33. Zivar, D., Kumar, S. and Foroozesh, J. 2021. “Underground hydrogen storage: A comprehensive review.” International Journal of Hydrogen Energy, 46(45), pp.23436–23462. https://doi.org/10.1016/j.ijhydene.2020.08.138 
  34. Zhang, G. and Wan, X. 2014. “A wind-hydrogen energy storage system model for massive wind energy curtailment.” International Journal of Hydrogen Energy, 39(3), pp.1243–1252. https://doi.org/10.1016/j.ijhydene.2013.11.003 
  35. Hou, P., Enevoldsen, P., Eichman, J., Hu, W., Jacobson, M. Z. and Chen, Z. 2017. “Optimizing investments in coupled offshore wind -electrolytic hydrogen storage systems in Denmark.” Journal of Power Sources, 359, pp.186–197. https://doi.org/10.1016/j.jpowsour.2017.05.048 
  36. Weidong, G. and Zhuoyong, Y. 2012. “Research on non-grid-connected wind power/water-electrolytic hydrogen production system.” International Journal of Hydrogen Energy, 37(1), pp.737–740. https://doi.org/10.1016/j.ijhydene.2011.04.109 
  37. De Luna, P., Hahn, C., Higgins, D., Jaffer, S. A., Jaramillo, T. F. and Sargent, E. H. 2019. “What would it take for renewably powered electrosynthesis to displace petrochemical processes?” Science, 364(6438), pp.eaav3506. https://doi.org/10.1126/science.aav3506 
  38. Zhou, J. Z. 2021. “Role of mineral flotation technology in improving bitumen extraction from mined A thabasca oil sands III . Next generation of water‐based oil sands extraction.” The Canadian Journal of Chemical Engineering, 99(3), pp.755–777. https://doi.org/10.1002/cjce.23874 
  39. Chen, C., Lu, Y. and Banares-Alcantara, R. 2019. “Direct and indirect electrification of chemical industry using methanol production as a case study.” Applied Energy, 243, pp.71–90. https://doi.org/10.1016/j.apenergy.2019.03.184 
  40. Huang, M., Yong, W. U. and Xizhi, W. E. N. 2013. “Feasibility analysis of hydrogen transport in natural gas pipeline.” Gas & Heat, 33(4), pp.39–42. 
  41. Xiangyang, M. A., Xiaomei, H. U. A. N. G. and Chang, W. U. 2018. “Study on the influence of natural gas hydrogenation on combustion characteristics of domestic gas cooker.” Renewable Energy Resources, 36(12), pp.1746–1751. 
  42. Aghahosseini, A., Bogdanov, D. and Breyer, C. 2020. “Towards sustainable development in the MENA region: Analysing the feasibility of a 100% renewable electricity system in 2030.” Energy Strategy Reviews, 28, pp.100466. https://doi.org/10.1016/j.esr.2020.100466 
  43. Eppinger, J. and Huang, K.-W. 2017. “Formic Acid as a Hydrogen Energy Carrier.” ACS Energy Letters, 2(1), pp.188–195. https://doi.org/10.1021/acsenergylett.6b00574 
  44. McDowall, W. 2012. “Technology roadmaps for transition management: The case of hydrogen energy.” Technological Forecasting and Social Change, 79(3), pp.530–542. https://doi.org/10.1016/j.techfore.2011.10.002 
  45. Solomon, B. D. and Banerjee, A. 2006. “A global survey of hydrogen energy research, development and policy.” Energy Policy, 34(7), pp.781–792. https://doi.org/10.1016/j.enpol.2004.08.007 
  46. Winter, C. 2005. “Into the hydrogen energy economy?milestones.” International Journal of Hydrogen Energy, 30(7), pp.681–685. https://doi.org/10.1016/j.ijhydene.2004.12.011 
  47. Hijikata, T. 2002. “Research and development of international clean energy network using hydrogen energy (WE-NET).” International Journal of Hydrogen Energy, 27(2), pp.115–129. https://doi.org/10.1016/S0360-3199(01)00089-1 
  48. Marchenko, O. V. and Solomin, S. V. 2015. “The future energy: Hydrogen versus electricity.” International Journal of Hydrogen Energy, 40(10), pp.3801–3805. https://doi.org/10.1016/j.ijhydene.2015.01.132 
  49. Midilli, A., Ay, M., Dincer, I. and Rosen, M. A. 2005. “On hydrogen and hydrogen energy strategies.” Renewable and Sustainable Energy Reviews, 9(3), pp.255–271. https://doi.org/10.1016/j.rser.2004.05.003  
  50. Barreto, L., Makihira, A. and Riahi, K. 2003. “The hydrogen economy in the 21st century: a sustainable development scenario.” International Journal of Hydrogen Energy, 28(3), pp.267–284. https://doi.org/10.1016/S0360-3199(02)00074-5 
  51. Zhang, F., Zhao, P., Niu, M. and Maddy, J. 2016. “The survey of key technologies in hydrogen energy storage.” International Journal of Hydrogen Energy, 41(33), pp.14535–14552. https://doi.org/10.1016/j.ijhydene.2016.05.293 
  52. Momirlan, M. and Veziroglu, T. . 2002. “Current status of hydrogen energy.” Renewable and Sustainable Energy Reviews, 6(1–2), pp.141–179. https://doi.org/10.1016/S1364-0321(02)00004-7 
  53. Midilli, A. and Dincer, I. 2007. “Key strategies of hydrogen energy systems for sustainability.” International Journal of Hydrogen Energy, 32(5), pp.511–524. https://doi.org/10.1016/j.ijhydene.2006.06.050 
  54. Veziroglu, T. N. (n.d.). “21st Century’s Energy: Hydrogen Energy System.” In Assessment of Hydrogen Energy for Sustainable Development (pp. 9–31). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-6442-5_2 
  55. Winter, C.-J. 2009. “Hydrogen energy — Abundant, efficient, clean: A debate over the energy-system-of-change☆.” International Journal of Hydrogen Energy, 34(14), pp.S1–S52. https://doi.org/10.1016/j.ijhydene.2009.05.063 
  56. Elam, C. 2003. “Realizing the hydrogen future: the International Energy Agency’s efforts to advance hydrogen energy technologies.” International Journal of Hydrogen Energy, 28(6), pp.601–607. https://doi.org/10.1016/S0360-3199(02)00147-7 
  57. Cipriani, G., Di Dio, V., Genduso, F., La Cascia, D., Liga, R., Miceli, R. and Ricco Galluzzo, G. 2014. “Perspective on hydrogen energy carrier and its automotive applications.” International Journal of Hydrogen Energy, 39(16), pp.8482–8494. https://doi.org/10.1016/j.ijhydene.2014.03.174 
  58. Dincer, I. 2002. “Technical, environmental and exergetic aspects of hydrogen energy systems.” International Journal of Hydrogen Energy, 27(3), pp.265–285. https://doi.org/10.1016/S0360-3199(01)00119-7 
  59. Ulleberg, Ø., Nakken, T. and Eté, A. 2010. “The wind/hydrogen demonstration system at Utsira in Norway: Evaluation of system performance using operational data and updated hydrogen energy system modeling tools.” International Journal of Hydrogen Energy, 35(5), pp.1841–1852. https://doi.org/10.1016/j.ijhydene.2009.10.077 
  60. Turner, J. A. 2004. “Sustainable Hydrogen Production.” Science, 305(5686), pp.972–974. https://doi.org/10.1126/science.1103197 
  61. Armaroli, N. and Balzani, V. 2011. “The Hydrogen Issue.” ChemSusChem, 4(1), pp.21–36. https://doi.org/10.1002/cssc.201000182 
  62. Ball, M. and Wietschel, M. 2009. “The future of hydrogen – opportunities and challenges.” International Journal of Hydrogen Energy, 34(2), pp.615–627. https://doi.org/10.1016/j.ijhydene.2008.11.014 
  63. Züttel, A. 2003. “Materials for hydrogen storage.” Materials Today, 6(9), pp.24–33. https://doi.org/10.1016/S1369-7021(03)00922-2 
  64. Holladay, J. D., Hu, J., King, D. L. and Wang, Y. 2009. “An overview of hydrogen production technologies.” Catalysis Today, 139(4), pp.244–260. https://doi.org/10.1016/j.cattod.2008.08.039 
  65. Alefeld, G. and Völkl, J. 1978. Hydrogen in metals I-Basic properties. Berlin and New York, Springer-Verlag (Topics in Applied Physics. Volume 28). 
  66. Chen, P., Xiong, Z., Luo, J., Lin, J. and Tan, K. L. 2002. “Interaction of hydrogen with metal nitrides and imides.” Nature, 420(6913), pp.302–304. https://doi.org/10.1038/nature01210 
  67. Ramachandran, R. 1998. “An overview of industrial uses of hydrogen.” International Journal of Hydrogen Energy, 23(7), pp.593–598. https://doi.org/10.1016/S0360-3199(97)00112-2 
  68. Jeffrey, G. A. and Saenger, W. 2012. Hydrogen bonding in biological structures. Springer Science & Business Media.
  69. Pimentel, G. C. and McClellan, A. L. 1971. “Hydrogen Bonding.” Annual Review of Physical Chemistry, 22(1), pp.347–385. https://doi.org/10.1146/annurev.pc.22.100171.002023 
  70. Neill, S. 2002. “Hydrogen peroxide signalling.” Current Opinion in Plant Biology, 5(5), pp.388–395. https://doi.org/10.1016/S1369-5266(02)00282-0 
  71. Roland, U., Braunschweig, T. and Roessner, F. 1997. “On the nature of spilt-over hydrogen.” Journal of Molecular Catalysis A: Chemical, 127(1–3), pp.61–84. https://doi.org/10.1016/S1381-1169(97)00110-6 
  72. Scheiner, S. 1997. Hydrogen bonding: a theoretical perspective. Oxford University Press on Demand.
  73. Keston, A. S. and Brandt, R. 1965. “The fluorometric analysis of ultramicro quantities of hydrogen peroxide.” Analytical Biochemistry, 11(1), pp.1–5. https://doi.org/10.1016/0003-2697(65)90034-5 
  74. Hvidt, A. and Nielsen, S. O. 1966. “Hydrogen Exchange in Proteins.” Advances in Protein Chemistry, 21, pp.287–386. https://doi.org/10.1016/S0065-3233(08)60129-1 
  75. Brown, I. D. 1976. “On the geometry of O–H...O hydrogen bonds.” Acta Crystallographica Section A, 32(1), pp.24–31. https://doi.org/10.1107/S0567739476000041 
  76. Jain, I. P. 2009. “Hydrogen the fuel for 21st century.” International Journal of Hydrogen Energy, 34(17), pp.7368–7378. https://doi.org/10.1016/j.ijhydene.2009.05.093 
  77. McDonald, I. K. and Thornton, J. M. 1994. “Satisfying Hydrogen Bonding Potential in Proteins.” Journal of Molecular Biology, 238(5), pp.777–793. https://doi.org/10.1006/jmbi.1994.1334 
  78. Weaver, P. F., Lien, S. and Seibert, M. 1980. “Photobiological production of hydrogen.” Solar Energy, 24(1), pp.3–45. https://doi.org/10.1016/0038-092X(80)90018-3 
  79. Chen, B., Ivanov, I., Klein, M. L. and Parrinello, M. 2003. “Hydrogen Bonding in Water.” Physical Review Letters, 91(21), pp.215503. https://doi.org/10.1103/PhysRevLett.91.215503 
  80. Ewan, B. and Allen, R. 2005. “A figure of merit assessment of the routes to hydrogen.” International Journal of Hydrogen Energy, 30(8), pp.809–819. https://doi.org/10.1016/j.ijhydene.2005.02.003 
  81. Brewer, G. D. 2017. Hydrogen aircraft technology. Routledge.
  82. Hübert, T., Boon-Brett, L., Black, G. and Banach, U. 2011. “Hydrogen sensors – A review.” Sensors and Actuators B: Chemical, 157(2), pp.329–352. https://doi.org/10.1016/j.snb.2011.04.070 
  83. Dincer, I. and Acar, C. 2015. “Review and evaluation of hydrogen production methods for better sustainability.” International Journal of Hydrogen Energy, 40(34), pp.11094–11111. https://doi.org/10.1016/j.ijhydene.2014.12.035 
  84. Abbas, H. F. and Wan Daud, W. M. A. 2010. “Hydrogen production by methane decomposition: A review.” International Journal of Hydrogen Energy, 35(3), pp.1160–1190. https://doi.org/10.1016/j.ijhydene.2009.11.036 
  85. Sakintuna, B., Lamaridarkrim, F. and Hirscher, M. 2007. “Metal hydride materials for solid hydrogen storage: A review☆.” International Journal of Hydrogen Energy, 32(9), pp.1121–1140. https://doi.org/10.1016/j.ijhydene.2006.11.022 
  86. Steinfeld, A. 2005. “Solar thermochemical production of hydrogen––a review.” Solar Energy, 78(5), pp.603–615. https://doi.org/10.1016/j.solener.2003.12.012 
  87. Minggu, L. J., Wan Daud, W. R. and Kassim, M. B. 2010. “An overview of photocells and photoreactors for photoelectrochemical water splitting.” International Journal of Hydrogen Energy, 35(11), pp.5233–5244. https://doi.org/10.1016/j.ijhydene.2010.02.133 
  88. Azeez, S., Garba, U. and Danshehu, B. 2020. “Application of Aspen HYSYS for Predicting the Effects of Impurities on Thermodynamic Performance of Glycerol Autothermal Reforming for Hydrogen Production.” Iranian (Iranica) Journal of Energy and Environment, 11(1), pp.51–56. https://doi.org/10.5829/IJEE.2020.11.01.08 
  89. Rahman–Al Ezzi, A. and Alhamdiny, S. 2019. “Elimination of Chloroform (CHCl3) from Drinking Water via a Synergistic Effect of Stripping, Oxidation and Adsorption Process in Air Lift Loop Reactor.” Iranian (Iranica) Journal of Energy and Environment, 10(2), pp.85–90. https://doi.org/10.5829/IJEE.2019.10.02.03 
  90. Akkoli, K., Goudadi, S., Shivashimpi, M. and Topannavar, S. 2020. “Biomass Characterization and Gasifier Design for Agricultural Residues.” Iranian (Iranica) Journal of Energy and Environment, 11(3), pp.198–203.  https://doi.org/10.5829/IJEE.2020.11.03.04 
  91. Raghavendra, N. 2018. “Corrosion Studies of Carbon Steel in 3% NaCl Solution in Presence of Expired Ceftin: Investigation of Environmental Friendly Corrosion Inhibitor.” Iranian (Iranica) Journal of Energy and Environment, 9(4), pp.295–298. https://doi.org/10.5829/IJEE.2018.09.04.10 
  92. Guidotti, T. L. 1996. “Hydrogen Sulphide.” Occupational Medicine, 46(5), pp.367–371. https://doi.org/10.1093/occmed/46.5.367 
  93. Chi, J. and Yu, H. 2018. “Water electrolysis based on renewable energy for hydrogen production.” Chinese Journal of Catalysis, 39(3), pp.390–394. https://doi.org/10.1016/S1872-2067(17)62949-8 
  94. Alshehri, A., Mogi, G. and Endo, R. 2018. “Spatial Data-Based Techno-economic Evaluation of Solar Hydrogen Production in the Middle East and North Africa (MENA) Region.” In 2018 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia) (pp. 115–120). IEEE. https://doi.org/10.1109/ISGT-Asia.2018.8467781