A Novel Direct Active and Reactive Power Control Method Using Fuzzy Super Twisting Algorithms and Modified Space Vector Modulation Technique for an Asynchronous Generator-based Dual-rotor Wind Powers

Document Type : Original Article


Departement de Génie Electrique, Ecole Nationale Polytechnique d’Oran Maurice Audin, BP 1523 EL M'NAOUER, Es-Sénia, Oran, Algérie


This work presents a novel direct active and reactive powers command (DARPC) scheme based on fuzzy super twisting algorithms (FSTAs) of an asynchronous generator (ASG) integrated into dual-rotor wind power (DRWP) systems. The DRWP has two sets of blades. So it is more efficient for collecting power from wind in comparison to a traditional wind turbine. The scientific works indicate that a DRWP could extract additional 20-30% power compared to a traditional wind turbine.  The conventional DARPC control scheme using the conventional integral-proportional (PI) regulators (DARPC-PI) has considerable reactive and active power oscillations. In order to guarantee an effective DARPC technique for the ASG-based DRWP system and minimize these oscillations, FSTAs are used in this work. Both DARPC strategies are presented and simulated from two tests using Matlab software. Simulation results showed the effectiveness of the designed DARPC control technique especially on the quality of the provided active and reactive power comparatively to the traditional DARPC control scheme with PI controllers.


1.    Amrane, F., and Chaiba, A. 2016. “A novel direct power control for grid-connected doubly fed induction generator based on hybrid artificial intelligent control with space vector modulation.” Revue Roumaine des Sciences Techniques. Série Électrotechnique et Énergétique, 61(3), pp.263–268. Retrieved from http://dspace.univ-setif.dz:8888/jspui/handle/123456789/2585
2.    Shehata, E. G., and Salama, G. M. 2013. “Direct power control of DFIGs based wind energy generation systems under distorted grid voltage conditions.” International Journal of Electrical Power and Energy Systems, 53, pp.956–966. https://doi.org/10.1016/j.ijepes.2013.06.006
3.    Jou, S.-T., Lee, S.-B., Park, Y.-B., and Lee, K.-B. 2009. “DirecDirect Power Control of a DFIG in Wind Turbines to Improve Dynamic Responses.” Journal of Power Electronics, 9(5), pp.781–790. Retrieved from https://www.koreascience.or.kr/article/JAKO200931559974840.pdf
4.    Wu, Y. K., and Yang, W. H. 2016. “Different Control Strategies on the Rotor Side Converter in DFIG-based Wind Turbines.” Energy Procedia, 100, pp. 551–555. https://doi.org/10.1016/j.egypro.2016.10.217
5.    Heydari, E., Rafiee, M., and Pichan, M. 2018. “Fuzzy-genetic algorithm-based direct power control strategy for DFIG.” Iranian Journal of Electrical and Electronic Engineering, 14(4), pp.353–361. https://doi.org/10.22068/IJEEE.14.4.353
6.    Izanlo, A., Kazemi, M. V., and Asghar Gholamian, S. 2018. “Comparative study between two sensorless methods for direct power control of doubly fed induction generator.” Revue Roumaine des Sciences Techniques. Série Électrotechnique et Énergétique, 62, pp.358–364. Retrieved from https://www.researchgate.net/publication/322364899
7.    Shehata, E. G. 2015. “Sliding mode direct power control of RSC for DFIGs driven by variable speed wind turbines.” Alexandria Engineering Journal, 54(4), pp.1067–1075. https://doi.org/10.1016/j.aej.2015.06.006
8.    Benbouhenni, H. 2021. “Intelligent super twisting high order sliding mode controller of dual-rotor wind power systems with direct attack based on doubly-fed induction generators.” Journal of Electrical Engineering, Electronics, Control and Computer Science, 7(4), pp.1–8. Retrieved from https://jeeeccs.net/index.php/journal/article/view/219
9.    Yahdou, A., Djilali, A. B., Boudjema, Z., and Mehedi, F. 2020. “Improved Vector Control of a Counter-Rotating Wind Turbine System Using Adaptive Backstepping Sliding Mode.” Journal Européen des Systèmes Automatisés, 53(5), pp.645–651. https://doi.org/10.18280/jesa.530507
10. Yahdou, A., Hemici, B., and Boujema, Z. 2015. “Sliding mode control of dual rotor wind turbine system.” he Mediterranean Journal of Measurement and Control, 11(2), pp.412–419. Retrieved from https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sliding+mode+control+of+dual+rotor+wind+turbine+system&btnG=
11. Benbouhenni, H., Boudjema, Z., and Belaidi, A. 2020. “Direct power control with nstsm algorithm for dfig using svpwm technique.” Iranian Journal of Electrical and Electronic Engineering, 17(1), pp.1–11. https://doi.org/10.22068/IJEEE.17.1.1518
12. Benbouhenni, H., Boudjema, Z., and Belaidi, A. 2019. “Using four-level NSVM technique to improve DVC control of a DFIG based wind turbine systems.” Periodica polytechnica Electrical engineering and computer science, 63(3), pp.144–150. https://doi.org/10.3311/PPee.13636
13. Benbouhenni, H., Boudjema, Z., and Belaidi, A. 2018. “Indirect Vector Control of a DFIG Supplied by a Two-level FSVM Inverter for Wind Turbine System .” Majlesi Journal of Electrical Engineering, 13(1), pp.45–54. Retrieved from http://mjee.iaumajlesi.ac.ir/index/index.php/ee/article/view/2693
14. Mehedi, F., Yahdou, A., Djilali, A., and Benbouhenni, H. 2020. “Direct Torque Fuzzy Controlled Drive for Multi-phase IPMSM Based on SVM Technique.” Journal Européen des Systèmes Automatisés, 53(2), pp.259–266. https://doi.org/10.18280/jesa.530213
15. Massoum, S., Meroufel, A., Massoum, A., and Wira, P. 2017. “A direct power control of the doubly-fed induction generator based on the SVM Strategy.” Elektrotehniski Vestnik, 84(5), pp.235–240. Retrieved from https://ev.fe.uni-lj.si/5-2017/Massoum.pdf
16. Djeriri,  Y.,  Meroufel,  A.,  Massoum,  A.,  and  Boudjema,  Z. 2014. “A comparative study between field oriented control strategy and direct power control strategy for DFIG.” Journal of Electrical Engineering, 14(2), pp.1–9. Retrieved from http://new.jee.ro/index.php/jee/article/view/WC1374511392W51ed61206e644
17. Chabni, F., Taleb, R., Benbouali, A., and Bouthiba, M. A. 2016. “The Application of Fuzzy Control in Water Tank Level Using Arduino.” (IJACSA) International Journal of Advanced Computer Science and Applications, 7(4), pp.261–265. Retrieved from https://pdfs.semanticscholar.org/82f2/9592c049b1d5803173025fcbca24627bb1bb.pdf
18. Benbouhenni, H., Boudjema, Z., and Belaidi, A. 2018. “Neuro-second order sliding mode control of a DFIG supplied by a two-level NSVM inverter for wind turbine system.” Iranian Journal of Electrical and Electronic Engineering, 14(4), pp.362–373. https://doi.org/10.22068/IJEEE.14.4.362
19. Benbouhenni, H. 2018. “Fuzzy Second Order Sliding Mode Controller Based on Three-Level Fuzzy Space Vector Modulation of a DFIG for Wind Energy Conversion Systems.” Majlesi Journal of Mechatronic Systems, 7(3), pp.17–26. Retrieved from http://journals.iaumajlesi.ac.ir/ms/index/index.php/ms/article/view/369
20. Yahdou, A., Boudjema, Z., Hemici, B., and Boudjema, Z. 2016. “Second order sliding mode control of a dual-rotor wind turbine system by employing a matrix converter.” Journal of Electrical Engineering, pp.1–11. Retrieved from https://www.researchgate.net/publication/317216127
21. El, S. A., Ardjoun, M., and Abid, M. 2015. “Fuzzy sliding mode control applied to a doubly fed induction generator for wind turbines.” Turkish Journal of Electrical Engineering & Computer Sciences, 23(6), pp.1673–1686. https://doi.org/10.3906/elk-1404-64
22. Boudjema, Z., Taleb, R., Djeriri, Y., and Yahdou, A. 2017. “A novel direct torque control using second order continuous sliding mode of a doubly fed induction generator for a wind energy conversion system.” Turkish Journal of Electrical Engineering & Computer Sciences, 25(2), pp.965–975. https://doi.org/10.3906/elk-1510-89
23. Benbouhenni, H. 2018. “Neuro-sconde order sliding mode field oriented control for DFIG based wind turbine.” International Journal of Smart Grid, 2(4), pp.209–217. Retrieved from https://www.academia.edu/download/58084192/25-144-1-PB.pdf
24. Bouyekni, A., Taleb, R., Boudjema, Z., and Kahal, H. 2018. “A second-order continuous sliding mode based on DPC for wind-turbine-driven DFIG.” Elektrotehniski Vestnik, 85(2), pp.29–36. Retrieved from https://ev.fe.uni-lj.si/1-2-2018/Bouyekni.pdf
25. Benbouhenni, H., Boudjema, Z., and Belaidi, A. 2018. “DFIG-based WT system using FPWM inverter.” International Journal of Smart Grid-ijSmartGrid, 2(3), pp.142–154. Retrieved from https://www.ijsmartgrid.com/index.php/ijsmartgridnew/article/view/16
26. Benbouhenni, H. 2018. Comparative Study Between NSVM and FSVM Strategy for a DFIG-based Wind Turbine System Controlled by Neuro-Second Order Sliding Mode. Majlesi Journal of Mechatronic Systems,. 7(1), pp.33-43. Retrieved from https://iranjournals.nlai.ir/handle/123456789/712266
27. Mohd Yusoff, N. A., M. Razali, A., Abdul Karim, K., Sutikno, T., and Jidin, A. 2017. “A Concept of Virtual-Flux Direct Power Control of Three-Phase AC-DC Converter.” International Journal of Power Electronics and Drive Systems (IJPEDS), 8(4), pp.1776-1784. https://doi.org/10.11591/ijpeds.v8.i4.pp1776-1784
28. Boudjema, Z., Meroufel, A., Djeriri, Y., Boudjema, Z., Meroufel, A., Djerriri, Y., and Bounadja, E. 2013. “Fuzzy sliding mode control of a doubly fed induction generator for wind energy conversion.” Carpathian Journal of Electronic and Computer Engineering, 6(2), pp.7–14. Retrieved from http://cjece.ubm.ro/vol/6-2013/202-6117.pdf
29. Amrane, F., Chaiba, A., Eddine Babes, B., and Mekhilef, S. 2016. “Design and implementation of high performance field oriented control for grid-connected doubly fed induction generator via hysteresis rotor current controller.” Revue Roumaine des Sciences Techniques. Série Électrotechnique et Énergétique, 61(4), pp.319–324. Retrieved from http://revue.elth.pub.ro/upload/66838802_FAmrane_RRST_4_2016_pp_319-324.pdf