Document Type : Original Article

Authors

1 Department of Mechanical, Faculty of Technology, University of Biskra, Biskra, Algeria

2 Department of Electrical Engineering, Faculty of Technology, University of Biskra, Biskra, Algeria

Abstract

The dependencye of aerosol optical depth on wavelength as well as the fit of the humidity, temperature and pressure approximation under atmoshperic condition at Biskra city of Algeria has been investigated. Our work consists of measuring and modeling solar radiation on the horizontal area to create a mathematical model of global solar radiation which depends on the aerosol optical depth data between two wavelengths: 550 and 1250 nm. Simultaneous measurements of global solar radiation were carried out and recorded on the horizontal zone on an urban site (Biskra, Algeria) to characterize the radiative effect of atmospheric aerosols from January to December 2013. In addition, the effect of meteorological parameters such as: humidity, ambient temperature, and time durations were studied. This relationship constitutes an alternative tool to estimate AOD at the routine lighting measurements available at many radiometric stations around the world. Finally, a comparative study was established between the theoretical results and the experimental data which leads at an excellent correlation by a low relative error which is limited by the interval 2 and 15%.

Keywords

1.    Guermoui, M., Abdelaziz, R., Gairaa, K., Djemoui, L., & Benkaciali, S., 2020, New temperature-based predicting model for global solar radiation using support vector regression, International Journal of Ambient Energy. https://doi.org/10.1080/01430750.2019.1708792
2.    Tuononen, M., O’Connor, E. J., & Sinclair, V. A., 2019, Evaluating solar radiation forecast uncertainty, Atmospheric Chemistry and Physics, 19(3): 1985–2000. https://doi.org/10.5194/acp-19-1985-2019
3.    Basaran, K., Özçift, A., & Kılınç, D., 2019, A New Approach for Prediction of Solar Radiation with Using Ensemble Learning Algorithm, Arabian Journal for Science and Engineering, 44(8): 7159–7171. https://doi.org/10.1007/s13369-019-03841-7
4.    Ghimire, S., Deo, R. C., Raj, N., & Mi, J., 2019, Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms, Applied Energy, 253: 113541. https://doi.org/10.1016/j.apenergy.2019.113541
5.    Beyaztas, U., Salih, S. Q., Chau, K.-W., Al-Ansari, N., & Yaseen, Z. M., 2019, Construction of functional data analysis modeling strategy for global solar radiation prediction: application of cross-station paradigm, Engineering Applications of Computational Fluid Mechanics, 13(1): 1165–1181. https://doi.org/10.1080/19942060.2019.1676314
6.    Ghimire, S., Deo, R. C., Downs, N. J., & Raj, N., 2019, Global solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cities of Queensland Australia, Journal of Cleaner Production, 216: 288–310. https://doi.org/10.1016/j.jclepro.2019.01.158
7.    Khatib, T., 2015, A Novel Approach for Solar Radiation Prediction Using Artificial Neural Networks, Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 37(22): 2429–2436. https://doi.org/10.1080/15567036.2012.713080
8.    Kuhe, A., Achirgbenda, V. T., & Agada, M., 2019, Global solar radiation prediction for Makurdi, Nigeria, using neural networks ensemble, Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2019.1637481
9.    Wang, L., Kisi, O., Zounemat-Kermani, M., Salazar, G. A., Zhu, Z., & Gong, W., 2016, Solar radiation prediction using different techniques: Model evaluation and comparison, Renewable and Sustainable Energy Reviews, 61: 384-397. https://doi.org/10.1016/j.rser.2016.04.024
10. Yadav, A. K., & Chandel, S. S., 2014, May 1, Solar radiation prediction using Artificial Neural Network techniques: A review, Renewable and Sustainable Energy Reviews, 33: 772-781. https://doi.org/10.1016/j.rser.2013.08.055
11. Premalatha, N., & Valan Arasu, A., 2016, Prediction of solar radiation for solar systems by using ANN models with different back propagation algorithms, Journal of Applied Research and Technology, 14(3): 206–214. https://doi.org/10.1016/j.jart.2016.05.001
12. Iqdour, R., & Zeroual, A., 2007, Prediction of daily global solar radiation using fuzzy systems, International Journal of Sustainable Energy, 26(1): 19–29. https://doi.org/10.1080/14786450701265371
13. Reza Parsaei, M., Mollashahi, H., Darvishan, A., Mir, M., & Simoes, R., 2020, A new prediction model of solar radiation based on the neuro-fuzzy model, International Journal of Ambient Energy, 41(2): 189–197. https://doi.org/10.1080/01430750.2018.1456964
14. Voyant, C., Notton, G., Kalogirou, S., Nivet, M. L., Paoli, C., Motte, F., & Fouilloy, A., 2017, May 1, Machine learning methods for solar radiation forecasting: A review, Renewable Energy, 105: 569-582. https://doi.org/10.1016/j.renene.2016.12.095
15. Rabehi, A., Guermoui, M., & Lalmi, D., 2020, Hybrid models for global solar radiation prediction: a case study, International Journal of Ambient Energy, 41(1): 31–40. https://doi.org/10.1080/01430750.2018.1443498
16. Reikard, G., 2009, Predicting solar radiation at high resolutions: A comparison of time series forecasts, Solar Energy, 83(3): 342–349. https://doi.org/10.1016/j.solener.2008.08.007
17. Samadianfard, S., Majnooni-Heris, A., Qasem, S. N., Kisi, O., Shamshirband, S., & Chau, K., 2019, Daily global solar radiation modeling using data-driven techniques and empirical equations in a semi-arid climate, Engineering Applications of Computational Fluid Mechanics, 13(1): 142–157. https://doi.org/10.1080/19942060.2018.1560364
18. Suthar, M., Singh, G. K., & Saini, R. P., 2017, Effects of air pollution for estimating global solar radiation in India, International Journal of Sustainable Energy, 36(1): 20–27. https://doi.org/10.1080/14786451.2014.979348
19. Foued Chabane, Guellai, F., Michraoui, M. Y., Bensahal, D., Bima, A., & Moummi, N., 2019, Prediction of the Global Solar Radiation on Inclined Area, Applied Solar Energy (English translation of Geliotekhnika), 55(1): 41–47. https://doi.org/10.3103/S0003701X19010055
20. Chabane, F., Khadraoui, Z., & Bensahal, D., 2019, Prediction of Global Solar Radiation on the Horizontal Area with the Effect of Ambient Temperature Part: II, TECNICA ITALIANA-Italian Journal of Engineering Science, 63(1): 73–77. https://doi.org/10.18280/ti-ijes.630110
21. Chabane, F., Laznek, I., & Bensahal, D., 2018, Prediction of global solar radiation on the horizontal area with the effect of relative humidity part: I, TECNICA ITALIANA-Italian Journal of Engineering Science, 61+1(2): 115–118. https://doi.org/10.18280/ti-ijes.620209
22. Chabane, F., Ghedhifi, M. A., Bensahal, D., Bima, A., & Moummi, N., 2018, Forecast of global solar irradiation with a perfect model according to incline angle, Journal of Power of Technologies, 98(3): 245–254.
23. Chabane, F., Moummi, N., & Brima, A., 2016, Predictions of solar radiation distribution: Global, direct and diffuse light on horizontal surface, European Physical Journal Plus, 131(4): 1–8. https://doi.org/10.1140/epjp/i2016-16106-7