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A B S T R A C T  
 

Smart homes enable many people, especially the elderly and patients, to live alone and maintain their 
independence and comfort. The realization of this goal depends on monitoring all activities in the house to 
report any observed anomaly immediately to their relatives or nurses. Anomaly detection in smart homes,  
just by existing data, is not an easy task. In this work, we train a recurrent network with raw outputs of binary 
sensors, including motion and door sensors, to predict which sensor will be switched on/off in the next event, 
and how long this on/off mode will last. Then, using Beam Search, we extend this event into k sequences of 
consecutive events to determine the possible range of upcoming activities . The error of this prediction  i.e., 
the distance between these possible sequences and the real string of events is evaluated using several 
innovative methods for measuring the spatio-temporal similarity of the sequences. Modeling this error as a 
Gaussian distribution allows to assess the likelihood of anomaly scores. The input sequences that are ranked  
higher than a certain threshold will be considered as abnormal activities. The results of the experiments  
showed that this method enables the detection of abnormal activities with desirable accuracy.  

doi: 10.5829/ijee.2019.10.02.10 
 

 
INTRODUCTION1 

 

The concept of smart homes as a subcategory of 

pervasive computing has long been the subject of interest 

in researchers and industrialists . Many researches and 

applications, such as home automation [1], optimal 

energy consumption planning [2], provision of 

telemedicine services [3], and home security and 

detection of break-ins by intruders [4] have been 

undertaken in the context of smart homes. However, most 

of these studies have focused on daily activity 

recognition and learning the routine of life in a smart 

home, failing to consider the challenging problem of 

anomaly detection and the detection of abnormal 

behaviors. 

Anomaly detection and recognizing abnormal 

behaviors are of paramount importance, specifically in 

behavior monitoring systems (BMS) that surveil patients 

and elderly. In BMS any deviation in the daily routine of 

the subject can be considered as a new complication, an 

unhealthy habit or trend, and or a change and decrease of 

the person’s abilities [5]. 

In the literature on machine learning, anomalies are 

classified into three groups: point anomaly, collective 

anomaly, and contextual anomaly [6]. Point anomalies 

usually manifest in the form of the disparity between the 

value of one or more separate points and other values. 

                                                                 
* Corresponding Author Email: moallem@shahroodut.ac.ir (Mahmoud Moallem) 

These anomalies in the smart home affect numerical 

static quantities such as the duration or frequency of 

doing a task. For example, a short night sleep or frequent 

visits to the bathroom can be considered as point 

anomaly. Cumulative anomaly refers to a set of values 

that are normative on their own but form anomaly when 

they are put together. The occurrence of this type of 

anomaly requires some kind of sequential (temporal-

spatial) or semantic (graph) relationship among the 

relevant data. For example, leaving TV on, turning on the 

lights in the bedroom, and sleeping on the bed are not 

abnormal. However, the consecutive occurrence of these 

events may suggest that the residents have gone to bed 

without turning off the TV. Finally, in the contextual 

anomaly, a single instance of data is considered to be 

abnormal given its context. This type of anomaly 

includes several secondary and sometimes unrelated 

factors and is, therefore, more complex than other types. 

In smart homes, these factors often embrace spatial and 

temporal aspects [7, 8]. For example, sleeping in the 

bedroom is normal and sleeping in the kitchen is 

abnormal. 

This paper is organized as follows: we review the 

related works in section 2. Section 3 explains the 

theoretical principles of the research. These principles 

include the introduction of recurrent networks as well as 

the explanation and formulation of the problem of smart 
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home anomaly detection. Section 4 describes the 

proposed method and outlines its major points. In section 

5, we introduce a dataset from a real smart home and 

report the experimental results on this dataset. Finally , 

conclusions are drawn in section 6. 

 

 

LITERATURE REVIEW 
 

Research on anomaly detection has a long established 

history. Studies in this area, like many other branches of 

machine learning, originated from statistics. For 

example, Grubbs [9] and Enderlein et al. [10] in their 

seminal old books, have suggested powerful statistical 

methods for detecting anomalies. Among traditional 

methods of machine learning, many, including support 

vector machines [11], neural networks [12], and decision 

tree [13], have been used to anomaly detection. A crowd 

of these methods has been proposed by Chandola et al. 

[6] and Pimentel et al. [14].  

In the field of smart homes anomaly detection, the 

concepts of routine actions and behavior modeling are the 

key concepts. Most researchers have tried to define and 

formulate normal behavior based on sensor data in an 

unsupervised manner. An unsupervised learning 

technique clusters the sensor data into different 

categories known as activities and  identifys 

abnormalities as an observation which is deviated from 

the models of these pre-known activities. To do this, they 

use one or more of the following methods: logical 

methods, statistical methods, rule-based methods and 

machine learning methods. 

The stochastic and non-deterministic nature of human 

activities complicates the modeling of these activities 

based on the common logic. Some researchers have 

attempted to take into account this uncertainty by using 

Bayesian logic and inference. For example, Ordonez et 

al. [15] defined three probabilistic features: sensor 

activation likelihood, sensor sequence likelihood, and 

sensor duration likelihood. Then they used these 

variables to model the behavior patterns of residents and 

to identify abnormalities in their behaviors. Using a 

Markov logic network, Hela et al. [16] have tried to 

integrate the power of first-order logic with the power of 

probability and using this probabilistic logic, search for 

abnormal activities and states in the uncertain space of 

the data in a smart home.  

The hidden Markov model (HMM) is the most 

frequently used statistical method in processing smart 

home data. For example, Monekosso et al. [17] modeled 

sensors outputs sequences using HMM and considered 

rare observations as anomalies. This researchers did not 

use any contextual elements such as time or place, but 

divided a day into time intervals and, by creating a 

separate model for each interval, enhanced the accuracy 

of their method in recognizing abnormal activities. 

Forkan et al. [18] also used the HMM to detect the 

anomalies. They used the high-level interpretation of 

sensor outputs, i.e., activities, as the model input. Also, 

they measured behavioral changes and health status of 

individuals respectively by analyzing their daily work 

and vital signs patterns. The outputs of these three models 

were given to a fuzzy system to make the final decision 

about the normality and abnormality of the situation. This 

complex approach suffers from two major drawbacks: 1) 

its precision largely depends on the method that is used 

to detect and extract activities from raw sensor outputs, 

2) despite considering the contextual factor of time, it has 

failed to consider some important periodic variations 

such as holidays and weather conditions.  

Another highly sophisticated method, which is a rule-

based method was provided by Yuan et al. [19]. This 

model, in addition to binary sensors, employed several 

other sensors such as light, temperature, blood pressure, 

and sound sensor. The outputs of these sensors have been 

fused in various ways to form the sequence of activities. 

In the next step, the proposed system analyses these 

series using fuzzy logic and case-based reasoning. In this 

analysis, many contextual variables such as times, places, 

weekdays, as well as environmental and physiological 

factors of individuals were taken into account. 

Nevertheless, the reliance on this method on case-based 

reasoning means that it requires background knowledge 

and is not totally data-driven. In fact, Yuan et al. [19] 

have not provided any model for normal activities. For 

this reason, some of the cases should be classified into 

normal and abnormal by experts at the initial stage so that 

when the system starts to work, the history of activity 

flow is assessed through this classification, and the 

knowledge base of the system is updated.  

In recent years, the use of machine learning was 

increased in smart homes studies. Given the variety and 

spread of human activities, the bulk of these studies have 

focused on specific types of activities. For example, 

Novak et al. [20] tried to detect anomalies in everyday 

activities by employing Self-Organizing Map and found 

that the duration for these activities is less than 15 

minutes. Moshtaghi et al. [21] focused on several 

temporal and spatial features, but they sufficed to the 

detection of inertia and inactivity periods, considering 

these periods as signs of anomalies, especially in the 

elderly. Paudel et al. [22], were used graphs to analyze 

and study a series of activities in 400 elderly people to 

detect abnormalities and symptoms of illness, though all 

of these people undertook a set of predefined exercises. 

Several other researchers such as Jakkula  [23] have used 

tools like  one class Support Vector Machine (OCSVM) 

to discover the smart home anomalies. Nonetheless, most 

of these works have merely focused on point or collective 

anomalies, failing to consider important contexts such as 

hours of daytime and night-time, weekdays, seasons, and 

so on.  
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The major weakness of the mentioned researches is that, 

they have relied on abstract concepts of activity and 

behavior. These concepts are very diverse for different 

people and at different times, so it is almost impossible 

to make a single definition of them. We tried directly use 

sensor data to detect anomalies,  instead of using these 

high-level concepts. In this way, deep learning helps to 

extract the main features and frequent patterns 

automatically. It allows us to implicitly include these 

concepts in our model. 

 

 

PRELIMINARIES 
Recurrent neural networks, LSTM, and GRU 

Recurrent Neural Networks are dynamic systems that 

maintain their internal state during process steps (for 

example, classification).  

This feature is due to the circular communications  

that exist between adjacent layer neurons. In some 

models, these connections are seen in the same layer of 

neurons, or even in the context of a neuron with itself. 

These recurrent connections allow the network to retain 

the data of previous steps until the next steps. Thus, 

recurrent networks have a kind of memory, and therefore 

their computational model is more powerful than that of 

the feed forward neural networks [24]. 

LSTM1 networks, instead of neurons use larger 

and more complex units called memory blocks. The main  

concept in each memory block is its state, which is a 

complex and nonlinear outcome of the input of block, 

output of adjacent blocks, state of the block in previous 

steps, and the state of the previous block. Each memory 

block is composed of a memory cell and some gates. The 

memory cell maintains the current state of the block and 

the gates handle the inward-outward flow of information . 

Figure 1 shows the structure of an LSTM memory block. 

As Figure 1 shows, each gate is a sigmoidal unit whose 

output ends up to a Hadamard or element-wise product.  

 In LSTM architecture, gates receive input of the 

current block (xt) and output of the previous block (h t-1) 

as inputs, pass  them through a  sigmoid layer  filter,  and  
 

 

 
Figure 1. The structure of an LSTM memory block 

                                                                 
1 Long Short Term Memory 
2 Gated Recurrent Unit 

produce a number  between  0 and  1.  This output defines 

the efficacy of the gate. The input gate determines which 

data should be stored in the memory cell, the forget gate 

decides how long these data should remain in the block, 

and the output gate specifies the data that should be 

mixed in the output of the block. Gers and Schmidhuber 

[26] added the current state of the block to the each gate s̀ 

input, named it as peephole connection, and created the 

most common type of LSTM blocks, known as peephole 

LSTM. The blocks used in this study are of original  
type. 

An LSTM block can be considered as an F function, 

which, by receiving the current input (xt), current state (ct-

1), and the output of the previous block (ht-1) generates 

the output of the current block (h t): 

ℎ𝑡 = 𝐹 (𝑥𝑡  ,ℎ𝑡−1 , 𝑐𝑡−1)  (1) 

The F function follows the following steps since receives 

the input until the moment of the generation in the output: 

𝑖𝑡 = 𝜎 (𝑊𝑥𝑖 ∗ 𝑥𝑡  + 𝑊ℎ𝑖 ∗ ℎ𝑡 −1  +   𝑏𝑖)  (2) 

𝐶  =  tanh (𝑊𝑥𝑐 ∗  𝑥𝑡  +   𝑊ℎ𝑐 ∗  ℎ𝑡 −1  +  𝑏𝑐
) (3) 

𝑓𝑡 =  𝜎 (𝑊𝑥𝑓 ∗ 𝑥𝑡 + 𝑊ℎ𝑓 ∗ ℎ𝑡 −1 + 𝑏𝑓) (4) 

𝐶𝑡 =  𝑓𝑡  ⨀  𝐶𝑡−1  +   𝑖𝑡  ⨀ 𝐶𝑡̂  (5) 

𝑜𝑡 = 𝜎 (𝑊𝑥𝑜 ∗ 𝑥𝑡  +  𝑊ℎ𝑜 ∗ ℎ𝑡 −1  +  𝑏𝑜) (6) 

ℎ𝑡 =  𝑜𝑡  ⨀  tanh  (𝐶𝑡)  (7) 

In the above relations, it, ft, and ot represent the input gate, 

the forget gate, and the output gate, respectively. W and 

b are parameters of the model, i.e., weights of 

connections and biases. σ, Tanh, and ⨀ are also 

hyperbolic tangent functions, sigmoid, and the element-

wise product operator, respectively. 

The GRU2 structure proposed in 2014 by Cho et al. [27] 

has been derived from the LSTM gated architecture. 

GRU is simpler than LSTM in at least two aspects: unlike 

LSTM, GRU does not have any memory cell. Hence, it 

does not retain the current state, Ct and transmits it 

immediately to the next unit after production. Also, in the 

design of GRU, input gate and forget gate are merged into 

a new gate called the update gate. Due to these 

differences, training GRU networks takes less time and 

data. In contrast, at least theoretically, LSTM networks 

should be able to learn long term dependencies better 

than GRU networks. However, there is no rule for 

selecting between LSTM and GRU. The correct way is 

built on trial and error and the final choice may depend 

heavily on the dataset and corresponding task [28].  
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Multi-task learning 

There are two methods for simultaneous prediction of 

two dependent and associated variables. In the first 

method, we consider them as two independent variables 

and develop separate models to predict each of them. But, 

in the second method, the variables simultaneously pass 

through shared layers, and then each variable is delivered 

to its specific layers. Each variable has its cost function 

and the training is done for minimizing an overall cost 

function that derived from the weighted sum of these 

functions. This method, called Multitask Learning [29], 

takes into account the dependence of the relevant 

variables. Multi-task learning has long been used in 

machine learning applications, including Natural 

Language Processing, Speech Recognition and Machine 

Vision [30]. Application of this method, especially for 

dependent variables, increases the accuracy of prediction 

and reduces the risk of overfitting. Figure 2 shows the 

difference between the usual single-task learning (or 

single learning) and multi-task learning (or simultaneous 

learning). 

Since we intend to perform a simultaneous prediction 

of two variables: the next event label and the duration of 

the event, multi-task learning better suits our purpose and 

achieves higher performance and accuracy.   

 

 

 
 

 
Figure 2. Single-task learning versus multi-tas k 

learning. 

Anomalies in Smart Homes 

Most of the smart home datasets, record sensor events in 

the following format: 

ei = <T, S, A> (8) 

In this triple, T is timestamp and stands for "sensor 

activation time", which is often expressed in seconds and 

includes date too; S stands for "Sensor Identifier" and can 

contain other information, such as the location or the 

object where the sensor is attached, and finally, A 

represents "Sensor Value".  Since all of our sensors are 

binary, this value can be considered as ON or OFF.  The 
index i in the definition of ei denotes that the order of 

events is important. 

However, we convert the sensor event ei into the 

following triple: 

ei = <T, SA, D> (9) 

In this triple, T still stands for timestamp and SA is a 

string obtained by concatenating S and A values from the 

previous triple, which is called Event Label. The third 

element, D or duration, shows the time between the 

present and previous event. In other words: 

Di= Ti - Ti-1 (10) 

Naturally, this value is zero at the first event. For 

example, in our method, the triple <T5, M1, ON> will be 

converted into triple <T5, M1ON, T5-T4>. 

A series of successive events such as E is called Episode: 

E = <e1, e2, e3, …., en>                                       (11) 

The order of an episode is determined by the activation 

time of its events (T). An episode can often be interpreted 

as an activity. For instance, if a person leaves the 

bedroom and go to the kitchen through a hallway and 

each of these locations has its motion sensor called e1, e2 

and e3, then episode <e1, e2, e3> will be observed.  

We define abnormal behavior as an episode in which: 

 has never been observed yet; 

 is rarely observed in the past;  

 is significantly away from the recent episodes. 

The above definitions of anomaly are only related to 

the events and the order of their occurrence, without 

considering temporal anomalies. There is another kind of 

anomaly in which: 

 an abnormal episode has already been seen, but 

its temporal coordinates are far different from 

the previous observations. 

For example, several-hours interval between episodes e2 

and e3 in the above example should be considered 

abnormal, as it may suggest that someone has suffered an 

accident before reaching to the kitchen.  

 

 

THE PROPOSED METHOD 
 

Figure 3 shows the overall scheme of the proposed 

method. First, the raw  sensors  events  are  preprocessed,  
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Figure 3. The overall scheme of the proposed method 

 
which includes the following steps: 

 By concatenating S and A values, SA value is 

obtained.  

 The character string of SA is encoded. This encoding 

can be carried out by One Hot encoding or Word 

Embedding method.  

 By subtracting the current and the previous event 

timestamps, D is calculated.  

 Timestamp conversion is carried out in a way that 

periodicity, cycle, and the return of time are 

considered. 

In explaining the last preprocess, it should be noted 

that applying common ways to express features like 

weekdays or months could lead to the confusion of 

classifiers. As an example, using numbers 1 to 7 for 

weekdays may give the classifier the misperception that 

4th and 5th days are more similar than the 1st and 5th days! 

The same holds true for days of month, even with more 

complication, as months lengths are different. So, it is 

generally preferable to use the Fourier transform for 

expressing the cycling and periodic variables. The above 

transformation formula, for example for a day's hours, is 

as follows: 

a = h × (2π / 24)                                         (12) 

This transformation maps hours into the surface of a 

circle. Thus, the difference between two hours is 

expressed as the angle between the two vectors created 

by this mapping, i.e. (cos (a), sin (a)). Figure 4 shows 

how the days of 3-months, in each of the above methods, 

is displayed.  

In the next step, the input data is segmented into 

windows of length n and overlapping m, to convert the 

problem into a type of supervised classification. Each 

window is considered as X and the next event, i.e., en + 1, 

is considered as Y. Now, we must find a mapping that 

can guess the next event with high precision by receiving 

an n-events window.  

F(<ei, ei+1, ei+2, …., ei+n>) = ei+n+1                                          (13) 

We used LSTM and GRU networks with different 

structures to find the above mapping. Details of these 

structures are presented in section 5-2. It should be noted 

that all utilized networks predict the SA i + n + 1 and Di + n + 

1 components of the next event, and the timestamp of this 

event, i.e., Ti+n+1, can be calculated by summing the 

temporal elements of the previous event, i.e., Ti+n + Di+n. 

After training the model by training data, we will have a 

predictive model that can predict the next event, i.e, et + 1, 

by receiving the input string <e1, e2, ..., et>. In time the 

detection of point anomalies; but, because we want to 

find collective and contextual anomalies, this criterion is 

not applicable to our issue. In other words, we are looking 

series applications, the distance between the predicted 

values and the real values is usually used as a measure for 

for a sequence of events that their occurrence at a 

specified time is considered as an anomaly. For this 

reason, after making the prediction, we add et + 1 to the 

beginning of the input string and remove the its first event 

(i.e. e1). Now we have a new t-fold episode, like <e2, e3,..., 

 

 

 
Figure 4. The days of a season with the number of days 

and the Fourier transform 
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et + 1> that can be used to predict the event in the next two 

steps, et + 2. By repeating this process, we bring a 

sequence of the subsequent probable events. This 

method, known as the recursive or iterative prediction, is 

a common practice in the literature on the sequences and 

time series [31]. The disadvantage of this method is that, 

despite its high precision in the first steps, its accuracy 

drops dramatically when the number of steps is 

increased, due to the accumulation of errors. For this 

reason, this approach is only suitable for predicting a 

limited horizon of upcoming events  [31].  

The distinctive feature of our work is that we use the 

Beam Search instead of using the usual greedy method to 

find the next step. Note that the proposed model at each 

step predicts a single number as duration or D, but the 

prediction of event label or SA is different. We use a 

Softmax function to predict this element in the last layer 

of our networks. The output of this layer is a vector 

whose length is equal to the number of existing labels and 

the value assigned to each item is equal to the probability 

of its occurrence. 

At each step, we select the m labels that have the 

highest probability, and by adding D to them, and 

computing the associated T, we offer m suggestion for 

the following event.  Then, we make iterative predictions 

with these m suggestions and create m*m proposals for 

the next two steps. By continuing this process in l 

iterations, we will end up having a full and balanced tree, 

with the depth l and m offspring per node. A complete 

traversing of all paths of this tree, from root to leaves, 

provides us with ml probable episodes along with the 

probability of each node. Now, using the Beam Search 

method, we can extract some possible sequences of 

events from these paths. The number of these sequences 

represents the desired value of k, which is called “beam 

size.” 

Beam Search is a heuristic method that explores the 

tree of the upcoming states and expands only the nodes 

that are more likely to occur than others [32]. This 

method is based on Breath-First Search, meaning that it 

first generates all successors of the states at the current 

level. The difference here is that the beam search, 

arranges these nodes based on a target function f, and 

only stores a predetermined number of best states at each 

level. This number, known as beam size, is usually 

determined by temporal and computational - especially 

memory- limitations. Naturally, larger values will 

increase the required time and memory for running the 

program. As the beam-size approaches to infinity, the 

method gets closer to the Breath-First Algorithm. Beam 

search is widely used in Text Mining and Natural 

Language Processing [33].  

Now we have k  event sequences of length l, which are 

likely to occur based on the available data. The distance 

between the real episode and this set can be considered 

as a prediction error and used to compute the Anomaly 

Score. These strings contain a set of ordered tuples, in 

which an element - the event label - is discrete, and the 

other element -the duration - is continuous. For this 

reason, none of the methods used to calculate the distance 

between discrete sequences or time series are applicable 

to this case.  

To calculate this distance, we use the method 

proposed by Park et al. [34]. In this study, four different 

similarity functions have been defined. These functions 

take into account all possible features concerning the 

differences and similarities of the above tuples. Then the 

weighted sum of them are used as the final s imilarity  

criterion. These functions are expressed in Equations  (14) 

to (18). In these equations, A and B refer to the two 

compared episodes and n denotes their lengths. Also, 

LCS is the Longest Common Substring of these two 

episodes, with the length k. Symbols | | and {{}} are also 

used to represent the length of a structure (e.g., a 

sequence) and the length of a MultiSet, respectively. A 

multiset is a set in which the elements may occur more 

than once and where several identical members do not 

reduce to one single member. Finally, S refers to the final 

similarity criterion: 

𝑆(𝐴, 𝐵) =  ∑ 𝑤𝑖  𝑆𝑖
4
𝑖=1   (14) 

𝑆1 =  
|𝐿𝐶𝑆𝐴,𝐵|

𝑘
 (15) 

𝑆2 =  
| {{ 𝑥 | 𝑥 ∉𝐿𝐶𝑆  ,𝑥∈𝐴   𝑜𝑟  𝑥∈𝐵 }} |

𝑛
  (16) 

𝑆3 = 1 −  
𝑆𝑡

𝑡𝐶
  (17) 

𝑆4 =  

∑
𝑀𝑖𝑛(𝑑𝑗,𝑑′

𝑗 )

𝑀𝑎𝑥(𝑑𝑗,𝑑′
𝑗 )

|𝐿𝐶𝑆|
𝑗=1

𝑘
  

(18) 

In Equation (17), the function St is defined as: 

𝑆𝑡 =  
∑ |𝑡𝑗 − 𝑡′

𝑗||𝐿𝐶𝑆|
𝑗=1

𝑘
  (19) 

It should be noted that among the above criteria, S3 

(Equation (17)) and S4 (Equation (18)) contains the 

concept of time. In these relations, tj, t'j, dj and d'j 

represents the timestamp and duration of two events of 

episodes A and B, which have the same position in the 

LCS. Finally, tC is the time constant in seconds, which 

depends on the period under study. For example, to study 

a 24-h interval, this constant is equal to 86,400. The value 

of each sub-function of Si is normalized to a number 

within 0 and 1. Then, the weighted sum of these values is 

used as the final criterion. By naming this function like 

F, the difference between the k-member set of the 

predicted sequences and the real episode will be as 

follows: 

𝑑 =
1

𝑘
 ∑ 𝑓(𝐸, 𝑆𝑖

)𝑘
𝑖=1                    (20) 

In this equation, E is the real episode, and Si is the i-th 

predicted sequence. By evaluating the test set with the 

trained model, an error vector is obtained which will be 

used to calculate the anomaly score in each input 
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window. This vector is modeled as a Gaussian 

distribution of N(μ, Σ) [35]. Thus, the probability of 

observing pt error at point et  is obtained by calculating 

the value of N at the point et. We use the Maximum 

Likelihood Estimation method to calculate μ and Σ 

values. Now any input window whose p t value is greater 

than the threshold t is considered as an anomaly. The 

value of this threshold can be determined either statically 

based on the existing observations or dynamically by 

maximizing the Fβ criterion. 

 
 

EXPERIMENTS 
Dataset 

The dataset used in this study was taken from the Center 

for Advanced Study of Adaptive Systems (CASAS) 

located at Washington State University. This center is 

one of the most prestigious smart home study centers. 

The contents of the dataset were collected in the course 

of 220-days- since November 4, 2010, to June 11, 2011 - 

from round-the-clock monitoring of an old woman. To 

construct this dataset, called Aruba [36], 40 sensors 

including motion sensors, door closure sensors, and 

temperature sensors were used. The Aruba dataset 

contains 11 types of daily activities and 1,719,553 sensor 

events. Since our study only deals with binary sensors, 

we eliminated the set of temperature events, reducing the 

number of these rows to 1,602,818. An example of the 

contents of Aruba is shown in Figure 5. This dataset has 

been primarily designed to recognize and classify daily 

activities, so there are no distinct and labeled anomalies 

in it. For this reason, we considered its data as normal, 

and accordingly, generated 100 sample anomalies 

manually. These records are in shape of episode form and 

contain one types of anomalies mentioned in section 3-3. 

Regretfully, there is currently no public and standard 

dataset for detecting anomalies in smart homes. For this 

reason, manual adding of anomalies to public ADL 

datasets, which were basically designed for activity 

recognition, is a conventional method utilized by many 

researchers, including Ye et al. [37], Ordonez et al. [15], 

and Shin et al. [38]. 

 

Implementation 
We conducted a series of experiments to evaluate the 

proposed method. These experiments differ in criteria 

such as the  length  of the input window,  the  overlapping 

 

 

 
Figure 5. A part of Aruba dataset  

of these windows, the number of output vectors, and the 

beam size (the number of output strings of the beam 

search). Table 1 summarizes the characteristics of these 

experiments. 

We also created various networks as the prediction and 

anomaly detection model that vary in the type of elements 

(LSTM or GRU), the number of blocks, the number of 

layers, the specifications of the fully connected (Dense) 

layers and Dropout. Table 2 summarizes the characteristics 

of these networks.  

Irrespective of these differences, other learning, and 

experimental parameters are identical in the experiences. 

Input data are divided into two sections of 70 and 30%. 

The first part constitutes the training set and the second 

part, after the injection of manually generated anomalies, 

has been used as the test set. The data were delivered to 

the models in 100-fold batches (batch size = 100), and 

each network was trained 50 times (epochs = 50). Finally , 

in all cases, the learning rate was 0. 0025, and the cross-

entropy function was used as the network loss function. 

In addition to the above structures, we also used the One-

Class Support Vector Machine (OC-SVM). This method 

has been used in several studies for detecting anomalies 

in smart homes.   

For the comparison of these methods, we used the 

Receiver Operating Characteristic (ROC) curve and Area 

Under the Curve (AUC) [39]. Common measurement  

criteria, such as precision, accuracy, recall and even the 

F1 measure, which are frequently used to analyze 

classification methods, lack the required efficacy and 

flexibility in detecting anomalies. For this reason, in most 

of the researches undertaken in this area, ROC and AUC 

criteria have been adopted [40, 41]. Table 3 shows the 

AUC values for different experiences. Figure 6 also 

shows the ROC graph for the same experiences. 

These experiments showed that LSTM networks 

work better. Of course, the training time of LSTM 

networks   is  much  longer.  The  superiority  of  the  P2  

 

 

TABLE 1. Features of experiments 

Name 
Length of the 
input window 

Overlapping 
% 

Number of 
output vectors 

Beam 
size 

P1 4 0 5 6 

P2 8 25 8 6 

P3 12 50 10 8 

 

 

TABLE 2. Features of the applied networks  

Name Type 
Recurrent 

layers 

Shared 

Layers 

connected 

layers 
Dropout 

N1 LSTM 64 - 32 1 (64) 512 - 128 0.4 

N2 GRU 64 – 32 1(64) 512 - 128 0.4 

N3 GRU 64 - 32 0 256 - 128 0.2 
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experiment shows that the length of the input window has 

a significant effect on the improvement of the prediction 

and the ability to detect abnormalities. In fact, when 

splitting the input entries into sliding windows, the length 

of each window should be close to the average length of 

the user's activity. Also, the overlapping of these 

windows should be selected so that abnormalities are not 

considered as normal strings by replication and 

distribution among adjacent windows. To adjust these 

parameters, we need to consider the statistics of the data 

used. 

These experiments showed that LSTM networks 

work better. Of course, the training time of LSTM 

networks is much longer. The superiority of the P2 

experiment shows that the length of the input window has 

a significant effect on the improvement of the prediction 

and the ability to detect abnormalities. In fact, when 

splitting the input entries into sliding windows, the length 

of each window should be close to the average length of 

the user's activity. Also, the overlapping of these 

windows should be selected so that abnormalities are not 

considered as normal strings by replication and 

distribution among adjacent windows. To adjust these 

parameters, we need to consider the statistics of the data 

used. Increasing  the  number  of  output  vectors  and  the 
 

 

TABLE 3. Features of the applied networks  

Method AUC value 

N1P2 0.9063 

OCSVM 0.8897 

N2P2 0.8830 

N2P3 0.8828 

N3P2 0.8384 

N2P1 0.8360 

N1P3 0.8026 

N3P1 0.7946 

N3P3 0.7861 

N1P1 0.7617 

 
 

 
Figure 6. ROC graph for different experiences  

beam size raise the runtime, but in contrast, it improves 

the variety and quantity of guesses. As a result, the 

distance of the proposed set will be reduced to the actual 

episode. This is probably why the P3 experience has 

produced good results. We also found that the use of 

multi-task learning and using shared layers to jointly 

predicting the next event label and its timestamp 

increases the accuracy of prediction and the likelihood of 

anomaly detection. The weakness of the N3 model results 

is due to the lack of these layers. 

All the required programs are written in Python, using 

Tensorflow and Keras libraries. These programs were run 

on Linux Mint, relying on the features of the CUDA 8 

library to utilize the graphics card capability. The 

computer  was  also  equipped   with  an  NVidia  GeForce 

920 MX graphics card with 256 CUDA cores, a quad-

core Intel Core i7 7500U 2.7 GHz processor and an 8GB 

physical memory. 
 

 

CONCLUSIONS 
 

In this article, we proposed the use of recurrent networks 

for anomaly detection in smart homes. Our proposed 

method does not require any activity recognition 

mechanism, and the raw output of sensors is received as 

the inputs. Since the common anomalies in smart homes 

are of contextual and collective types, we selected some 

of the most probable upcoming sequences of events using 

beam search so that their comparison with real episode 

alerted us about the possible occurrence of the anomalies.  

The results of our experiments showed that this 

method was successful in detecting various anomalies 

and identifying the range of them with desirable 

precision. Based on our experience, LSTM networks 

outperform GRU networks. The truth of the last 

proposition, and the values of other parameters, such as 

the size of the input window, their overlapping 

percentage, the beam size of beam search, among other 

things, should be examined separately for each dataset.  

Along with the strengths of the proposed method, we 

should point out that the use of deep learning usually 

requires considerable data, time, and computing 

resources. This makes our method unsuitable for use as 

an online tool. An anomaly detection system is expected 

to act online and promptly detect and report 

abnormalities in an appropriate time. It should further be 

noted that common artificial neural networks – Shallow 

and Deep - could not yet offer insights into uncertainty 

prediction as it was introduced in this paper. However, 

finding a way to reduce the temporal cost of the proposed 

method and transforming it into an online technique for 

live detection of anomalies are topics that should be 

further explored for their theoretical and practical values. 

Besides, using Bayesian neural network (BNN) 

architecture may improve time series predictions 

accuracy and uncertainty estimations at scale. 
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āºĊî¯ 

Ăýw·wăć  ºþúÉĀăć½wĊÆz Ăz Ăz ¹v¾åv ¿vÿāÂĉ z ÿ ûwñ¹½Ā¸õwÅûv½wúĊ  üĉvù v½ ûwîùvĈºă¹ Ăz ĂíwĄþ£Ĉĉ ñºý¿Ĉ Iā¹Āúý  óĒê¤Åv¹Ā· ÈĉwÅj ÿ  Øæ³ v½{õv )ºþþí Ă¤

 èê´£vüĉ  Ăí ¢Åv ûj ÿ¾ñ½¹ ¾ùvówÞåv Ăz Ăýw· ûwþíwÅw~ øtv¹ ½ĀÕÈĉ Ăz ÿ āºÉ½w¬þăwý ĂÚ³Ēù Ð´ùIć ¹Àý Ăz ÛĀÑĀùûwîĉ wĉ ñ Ç½vÀñ ¹¾å ûv½w¤Å¾~¹¹¾ £ wĄýj w

¾Õw· wz øăć ñºý¿ ā¹ĀÅjĈ  )ºþþí ½¹ ć½w¬þăwý äÊíĂýw·wă IºþúÉĀă ćā¹v¹ Ăz wî£v wz Mwå¾Í ÿ ā¾{· Èýv¹ ¿v ā¹wæ¤Åv ûÿºzwăć MđĀÍv ¹Ā«Āù ¢ÆĊý ĈýwÅj ½wíJ 

 wùvć¾Ċñ¹wĉ úÝIèĊ ĂzÿāÂĉ ÉĂî{wăć ¤Êñ¿wzĈ vüĉ z v½ ¾ùv¾¤ÊĊ  )¢Åv ā¹¾í üîúù Ă¤É¼ñ ¿v Ăõwêù ½¹ wù ¾Ñw³ wz v½ Ĉ¤Êñ¿wz Ăî{É ìĉ«ÿ¾·Ĉ÷w· ćwă wă¾òÆ³ ć

Ç¿Āùj Ix½¹ ÿ ¢í¾³ ćwă¾òÆ³ ôùwÉ IĈĉÿ¹ÿ¹ ùĈøĊă¹  w£ºývĀ¤z ½¹ wz¢åwĉ ìĉ ÿ½ ¿v ĂöÆöÅćwă¹vºĉ ~ IĂzwÊùÈĊĈþĊz í ºþíĂ ÿ½ ½¹¹vºĉ ºÞzć òÆ³ ÷vºí ¾

 üÉÿ½wĉ ºÉ ºăvĀ· ÇĀùw· )ºĊÊí ºăvĀ· óĀÕ ½ºê¯ û¹Āz ÇĀùw· wĉ üÉÿ½ üĉv ÿ Ăz wz Ä Åñ½wí ć¾ĊĀ¬¤Æ«ć v½ ¹vºĉÿ½ üĉv IĈö´ù Ā£¾~ ĂöÆöÅ Ăzvć  ¿v

ÿ½ćwă¹vºĉ ù Ç¾¤Æñ ôú¤´ùĈøĊă¹  w£)¹¹¾ñ Ì¸Êù Ĉ£j ówÞåv Ĉõwú¤³v ā¹ÿº´ù wÖ·ć vüĉ ~ÈĊIĈþĊz ĈþÞĉ ĂöÆöÅ ĂöÍwåwăć wĉāºÉ¹ ÿ½ Ă¤É½ wzwă¹vºĉć 

ÞévÿIĈ  ¿v ā¹wæ¤Åv wz ćv¾z ć½wî¤zv Çÿ½ ºþ¯¬þÅÈ ¢ăw{É Ĉýwîù(Ĉýwù¿ Ă¤É½¿½v wăĈzwĉ ùĈ¹ĀÉv û¹¾í óºù )üĉ  yõwé ½¹ wÖ·ìĉ ¿Ā£Üĉ ÅĀñĈ ù ìúíĈºþí 

¹ÿ½ÿ ¾ă Ăz w£ć ìĉ ½w¬þăwý Ă{£½ć ¹ĀÉ ā¹v¹) ÕwêýĈ  ¿v wĄýj Ă{£½ Ăíìĉ ï½Àz Ì¸Êù Ăýw¤Åj º³Ăz ºÉwz ¾£ ûvĀþÝ ºýÿ½w¤ý )ºÉ ºþăvĀ· Ă¤å¾ñ ¾Úý ½¹ ½w¬þăwýĉª 

z¾¬£wĊ÷w¬ýv ¡ù ûwÊý āºÉĈºă¹ v Ăíüĉ  Çÿ½ówÞåv äÊí ûwîùv õĀ{é ôzwé ¢é¹ wz v½ ½w¬þăwýĈ ù øăv¾åĈºþí. 
 

 
 
 


