Document Type : Original Article

Authors

1 Environmental Researcher, Linnaeus University, Växjö, Sweden+Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden

2 Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden

Abstract

Analysis of urban climate changing is the basis for the implementation of storm water management measurements. Climate tensions such as changing precipitation patterns, fluctuations in temperature, and extreme events are already affecting water resources. For instance, precipitation pattern will be changed due to more water vapor in the atmosphere. Hence, it will not be evenly distributed. Some places will see more rain, others will get less snow. However, climate changes, such as the amount, timing, and intensity of rain events, in combination with land development, can significantly affect the amount of storm water runoff that needs to be managed. Firstly, this essay will be discussed about the prediction of climate change using a fuzzy neural network (FNN) and it shows the accuracy of this method for anticipating storm water. Secondly, based on the results of the first phase, it determines the critical area for preparing storm water systems with the application of GIS tools and technology.

Keywords

1.     IPCC, Climate Change, the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom: Cambridge University Press, 2007.
2.     Solomon, S., Qin, D., Manningm, M., Marquis, M., Averyt, K., Tignor, M. B., Miller, H. L. and Chen, Z. H. (2007). The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA; pp 91-100.
3.  U.S. Environmental Protection Agency (EPA). Washington, DC, Protecting Water Quality from Urban Runoff. Document No. EPA 841-F-03-003 (2003)
4.     United States. National Research Council. Washington, DC, Urban Storm water Management in the United States, pp. 18–20 (2008)
5.   Gleick, Peter H., and Meena Palaniappan. "Peak water limits to freshwater withdrawal and use." Proceedings of the National Academy of Sciences 107, no. 25 (2010): p. 11155-11162.
6.     Milly P. C. D., Dunne K. A. & Vecchia A. V. 2005. Global pattern of trends in streamflow and water availability in a changing climate. Nature Vol 438: p. 347-350
7.    IPPC. 2007. Climate Change 2007. Fourth Assessment Report on the IPCC. (Solomon et al. Ed.). Cambridge University Press. Cambridge (UK)
8.     Easterling, D.R., G.A. Meehl, C. Parmesan, S.A. Changnon, T.R. Karl, and L.O. Mearns. 2000.
9.  Climate extremes: Observations, modeling, and impacts. Science 289(5487): p. 2068-2074.
10.  McCann, D. W. (1992). A neural network short-term forecast of significant thunderstorms. Wea Forecasting, 7, p. 525-534.
11.    Boznar, M., Lesjak. M. and Mlakar, P. A. (1993). Neural network-based method for short-term predictions of ambient SO2 concentrations in highly polluted industrial areas of complex terrain. Atmosperic Environment, 27B, p. 221-230.
 12.   Jin, L., Gupta, M. M. and Nikiforuk, P. N. (1994). Computational neural architectures for control applications. (In Aminzadeh, F. and Jamshidi, M., Soft Computing: Fuzzy Logic, Neural Networks, and Distributed Artificial Intelligence (pp. 121-152). New York: Prentice-Hall).
 13.   Aussem, Alex, Fionn Murtagh, and Marc Sarazin. "Dynamical recurrent neural networks—towards environmental time series prediction." International Journal of Neural Systems 6, no. 02 (1995): p. 145-170.
14.    Bankert, R. L. and Aha, D. W. (1996). Improvement to a neural network cloud classifier. Journal of Applied Meteorology, 35, p. 2036-2039.
 15.   Eckert, P., Cattani, D. and Ambuhl, J. (1996). Classification of ensemble forecasts by means of an artificial neural network. Meteorology Applied, Haupt, R. L. & Haupt, S. E. (2nd Eds.). Practical genetic algorithms. New Jersey: Wiley Interscience: Hoboken.
 16.   Marzban, C. and Stumpf, G. J. (1996). A neural network for tornado prediction based on doppler radar-derived attributes. Journal of Applied Meteorology, 35, p. 617-626.
 17.   Noori, Roohollah, Gholamali Hoshyaripour, Khosro Ashrafi, and Babak Nadjar Araabi. "Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration." Atmospheric Environment, Vol. 44, no. 4 (2010): p. 476-482.
 18. Shao, J. "Improving nowcasts of road surface temperature by a backpropagation neural network." Weather and Forecasting, Vol. 13, no. 1 (1998): p. 164-171.
 19. Nejadkoorki, F., and S. Baroutian. "Forecasting extreme PM10 concentrations using artificial neural networks." International Journal of Environmental Research, Vol. 6, no. 1 (2012): p. 277-284.
 20.  Mpelelasoka, F. S., Mullan, A. B. and Heerdegen, R. G. (2001). New Zealand climate change information derived by multivariate statistical and artificial neural networks approaches. International Journal of Climatology, 21, p. 1415-1433.
 21.  E. Aldrian, Y.S. Djamil, Application of multivariate Anfis for daily rainfall prediction Influences Train. Data Size, Makara, Sains, 12 (1) (2008), pp. 7-1421.
 22.  Banik, Shipra, Mohammed Anwer, AFM Khodadad Khan, Rifat Ara Rouf, and Farah Habib Chanchary. "Forecasting Bangladeshi monsoon rainfall using neural network and genetic algorithm approaches." The International Technology Management Review, Vol. 2, no. 1 (2009): p. 1-18.
 23.  Jeong, Changsam, Ju-Young Shin, Taesoon Kim, and Jun-Haneg Heo. "Monthly precipitation forecasting with a neuro-fuzzy model." Water resources management, Vol. 26, no. 15 (2012): p. 4467-4483.
 24.  El-Shafie, Ahmed, O. Jaafer, and Seyed Ahmad Akrami. "Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River, Malaysia." International Journal of Physical Sciences, Vo. 6, no. 12 (2011): 2875-2888.
25.   Nayak, Deepak Ranjan, Amitav Mahapatra, and Pranati Mishra. "A survey on rainfall prediction using artificial neural network." International Journal of Computer Applications, Vol.  72, no. 16 (2013).
 26.  C. Fernando, J. Nickel, Average hourly wind speed forecasting with ANFIS, in: 11th Americas Conference on wind Engineering – San Jaun Puerto Rico, 2009.
 27.  Y.W. Khun, A study on soft computing approach in weather forecasting. Master thesis, Universiti Teknologi Malaysia, Faculty of Computer Science and Information Systems, 2010.
 28.  S. Gyanesh, K. Sanjeev, K.K. Manoj Application of artificial neural network in weather forecasting a comprehensive literature review ." International Journal of Computer Applications (2012), p. 0975-8887
 29. Trigo, Ricardo M., and Jean P. Palutikof. "Simulation of daily temperatures for climate change scenarios over Portugal: a neural network model approach." Climate Research,. 13,. 1 (1999): p. 45-59.
 30.  J. Yen, R. Langari Fuzzy Logic, Intelligence, Control, and Information Prentice Hall (1999).
 31.  Bai, P., Song, X., Wang, J., Shi, W., Wang, Q.: A Hillslope Infiltration and Runoff Prediction Model of Neural Networks Optimized by Genetic Algorithm. In: Brennan, R., Fleck II, J., van der Meer, S. (eds.) MACE 2010. LNCS, vol. 6473, pp. 1256–1259. Springer, Heidelberg (2010).
 32.  Solaimani, K.: Rainfall-runoff Prediction Based on Artificial Neural Network (A Case Study: Jarahi Watershed). American-Eurasian Journal of Agriculture and Environmental Sciences 5(6), p. 856–865 (2009)
 33.  A. Golipour, B. N. Araabi, and C. Lucas, “Predicting Chaotic Time Series Using Neuraland Neurofuzzy Models A Comparative Study,’’ Neural Processing Letters. vol. 24, no. 3, p. 217-239, 2006.
 34.  Dadgostar, F., and A. Sarrafzadeh. "A formal model of emotional-response, inspired from human cognition and emotion systems." (2006). vol. 9, pp. 89-97.