Phytoremediation as a Promising Method for the Treatment of Contaminated Sediments

Document Type: Technical Note


1 Department of Biology and Environmental Science, Faculty of Health and Life Science, Linnaeus University, 39182, Kalmar, Sweden

2 Department of Environmental Science, Forestry College, Beihua University, Jilin 132013, Jilin City, China


Dredging activities are necessary to maintain the navigation depth of harbors and channels. Additionally, dredging can prevent the loss of water bodies. A large amount of extracted sediments is produced around the world. Removed material is widely disposed at open seas or landfills. Much of the dredged material is polluted and is classified as unsuitable for open-sea disposal. In Sweden, many dredging activities are taking place nowadays like that in Oskarshamn harbor, Inre harbor Norrköping municipality and Malmfjärden bay in Kalmar. In this review, the potential of phytoremediation as a treatment method is discussed with focus on suggested methods for reusing the treated sediments. Recycling or reusing of dredged and treated sediments will preserve Earth natural resources as well as reduce diffusion of contaminants to the environment.


  1. Yahya Jani, Fabio Kaczala, Charlotte Marchand, Marika Hogland, Mait Kriipsalu, William Hogland, Anders Kihl. 2016. Characterization of mined fine fraction and waste composition from a Swedish landfill. Waste Management& Research 34(12):p.1292-1299.
  2. J. Burlakovs, Yahya Jani, M. Kriipsalu, Z. Vincevica-Gaile, F. Kaczala, G. Celma, R. Ozola, L. Rozina, V. Rudovica, M. Hogland, A. Viksna, K. Pehme, W. Hogland, M. Klavins. (2018). On the way to ‘zero waste’ management: Recovery potential of elements, including rare earth elements, from fine fraction of waste. Journal of Cleaner Production 186: p. 81-90.
  3. Boesch M., Vadenbo C., Saner D., Huter C., Hellweg S. (2014). An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland. Waste management 34:p. 378-389.
  4. Pederson K., Lejon T., Jensen P., Ottosen L. (2016). Applying multivariate analysis as decision tool for evaluating sediment-specific remediation strategies. Chemosphere 151:p59-67.
  5. His E., Beiras R., Seaman M. (1999). The assessment of marine pollution bioassay with bivalve and larvae. Advanced Marine Biology 38:178-371.
  6. Ullmann, A., Brauner, N., Vazana, S., Katz, Z., Goikhman, R., Seemann, B., and Gozin, M. (2013). New biodegradable organic-soluable chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media. Journal of Hazardous Materials 260:p. 676-688.
  7. Ali, M. M., Ali, M. L., Islam, M. S., and Rahman, M. Z. (2016) Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environmental Nanotechnology, Monitoring & Management 5: p. 27-35.
  8. Zahra, A., Hashmi, M. Z., Malik, R. N., and Ahmed, Z. (2014) Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah-Feeding tributary of the Rawal Lake Reservoir, Pakistan. Science of The Total Environment 470-471: p. 925-933.
  9. Zhang, C., Yu, Z. G., Zeng, G. M., Jiang, M., Yang, Z. Z., Cui, F. and Hu, L.  (2014) Effects of sediment geochemical properties on heavy metal bioavailability. Environment International 73: p. 270-281.
  10. Zheng, N. A., Wang, Q., Liang, Z., and Zheng, D. (2008) Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China. Environmental Pollution 154(1): p. 135-142.
  11. Selvaraj K., Ram Mohan V. and Szefer P. (2004) Evaluation of metal contamination in coastal sediments of the Bay of Bengal, India: geochemical and statistical approaches. Marine Pollution Bulletin 49(3): p. 174-185.
  12. slam, M. S., Ahmed, M. K., Raknuzzaman, M., Habibullah-Al-Mamun, M., and Islam, M. K. (2015) Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecological Indicators 48: p. 282–291.
  13. Nath B.N., Kunzendorf H. and Plüger W.L. (2000) Influence of Provenance, Weathering, and Sedimentary Processes on the Elemental Ratios of the Fine-Grained Fraction of the Bedload Sediments from the Vembanad Lake and the Adjoining Continental Shelf, Southwest Coast of India. Journal of Sedimentary Research 70(5): p. 1081–1094.
  14. Nesbitt, H. W., G. M. Young, S. M. McLennan, and R. R. Keays (1996). Effects of Chemical Weathering and Sorting on the Petrogenesis of Siliciclastic Sediments, with Implications for Provenance Studies. The Journal of Geology, The University of Chicago Press 104(5): p. 525–542.
  15. Hou, D., He, J., Lü, C., Ren, L., Fan, Q., Wang, J., and Xie, Z. (2013) Distribution characteristics and potential ecological risk assessment of heavy metals (Cu, Pb, Zn, Cd) in water and sediments from Lake Dalinouer, China. Ecotoxicology and Environmental Safety 93: p. 135–144.
  16. Morillo J, Usero J and Gracia I (2004) Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere 55(3): p. 431–442.
  17. Simpson, S. L., Ward, D., Strom, D., and Jolley, D. F. (2012) Oxidation of acid-volatile sulfide in surface sediments increases the release and toxicity of copper to the benthic amphipod Melita plumulosa. Chemosphere 88(8): p. 953-961.
  18. Campana, O., Simpson, S. L., Spadaro, D. A., and Blasco, J.  (2012) Sub-Lethal Effects of Copper to Benthic Invertebrates Explained by Sediment Properties and Dietary Exposure. Environmental Science & Technology, American Chemical Society 46(12): p. 6835–6842.
  19. De Jonge, M., Eyckmans, M., Blust, R., and Bervoets, L. (2011) Are Accumulated Sulfide-Bound Metals Metabolically Available in the Benthic Oligochaete Tubifex tubifex? Environmental Science & Technology, American Chemical Society 45(7): p. 3131-3137.
  20. Chen, F., Yang, Y., Zhang, D., and Zhang, L. (2006) Heavy metals associated with reduced sulfur in sediments from different deposition environments in the Pearl River estuary, China. Environmental Geochemistry and Health 28(3): p. 265-272.
  21. Fang T, Li X and Zhang G (2005) Acid volatile sulfide and simultaneously extracted metals in the sediment cores of the Pearl River Estuary, South China. Ecotoxicology and Environmental Safety 61(3): p. 420-431.
  22. Burton ED, Bush RT and Sullivan LA (2006) Acid-Volatile Sulfide Oxidation in Coastal Flood Plain Drains:  Iron−Sulfur Cycling and Effects on Water Quality. Environmental Science & Technology, American Chemical Society 40(4): p. 1217-1222.
  23. Hernández-Crespo, C., Martín, M., Ferrís, M., and Oñate, M.  (2012) Measurement of Acid Volatile Sulphide and Simultaneously Extracted Metals in Sediment from Lake Albufera (Valencia, Spain). Soil and Sediment Contamination: An International Journal, Taylor & Francis 21(2):p. 176-191.
  24. Machado, W., Villar, L. S., Monteiro, F. F., Viana, L. C., and Santelli, R. E.  (2010) Relation of acid-volatile sulfides (AVS) with metals in sediments from eutrophicated estuaries: Is it limited by metal-to-AVS ratios? Journal of Soils and Sediments 10(8): 1606-1610.
  25. Nizoli EC and Luiz-Silva W (2012) Seasonal AVS–SEM relationship in sediments and potential bioavailability of metals in industrialized estuary, southeastern Brazil. Environmental Geochemistry and Health 34(2): p. 263–272.
  26. Besser, J. M., Brumbaugh, W. G., Kemble, N. E., May, T. W., and Ingersoll, C. G. (2004) Effects of Sediment Characteristics on the Toxicity of Chromium (III) and Chromium (VI) to the Amphipod, Hyalella azteca. Environmental Science & Technology, American Chemical Society 38(23):p. 6210–6216.
  27. Fernandes, L., Nayak, G. N., Ilangovan, D., and Borole, D. V (2011) Accumulation of sediment, organic matter and trace metals with space and time, in a creek along Mumbai coast, India. Estuarine, Coastal and Shelf Science 91(3): p. 388–399. 
  28. Guven DE and Akinci G (2013) Effect of sediment size on bioleaching of heavy metals from contaminated sediments of Izmir Inner Bay. Journal of Environmental Sciences 25(9): p. 1784–1794. 
  29. Strom, D., Simpson, S. L., Batley, G. E., and Jolley, D. F. (2011) The influence of sediment particle size and organic carbon on toxicity of copper to benthic invertebrates in oxic/suboxic surface sediments. Environmental Toxicology and Chemistry, Wiley-Blackwell 30(7): p. 1599-1610.
  30. Besser, J. M., Brumbaugh, W. G., May, T. W., and Ingersoll, C. G. (2009) Effects of organic amendments on the toxicity and bioavailability of cadmium and copper in spiked formulated sediments. Environmental Toxicology and Chemistry, Wiley-Blackwell 22(4): p. 805-815. 
  31. Correia AD and Costa MH (2000) Effects of sediment geochemical properties on the toxicity of copper-spiked sediments to the marine amphipod Gammarus locusta. Science of The Total Environment 247(2): p. 99–106. 
  32. Craven AM, Aiken GR and Ryan J.N. (2012) Copper (II) Binding by Dissolved Organic Matter: Importance of the Copper-to-Dissolved Organic Matter Ratio and Implications for the Biotic Ligand Model. Environmental Science and Technology, American Chemical Society 46(18): p. 9948–9955.
  33. Du Laing, Gijs, J. Rinklebe, Bart Vandecasteele, Erik Meers, and Filip MG Tack (2009) Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Science of The Total Environment 407(13): p. 3972-3985. 
  34. Nobi, E. P., E. Dilipan, T. Thangaradjou, K. Sivakumar, and L. Kannan (2010) Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuarine, Coastal and Shelf Science 87(2): p. 253-264.
  35. Slack RJ, Gronow JR and Voulvoulis N (2005) Household hazardous waste in municipal landfills: contaminants in leachate. Science of The Total Environment 337(1): p. 119-137.
  36. Peng, J. F., Song, Y. H., Yuan, P., Cui, X. Y and Qiu, G. L.  (2009) The remediation of heavy metals contaminated sediment. Journal of Hazardous Materials 161(2): p. 633–640. 
  37. Chen, L., Wang, L. Y., Liu, S. J., Hu, J. Y., He, Y., Zhou, H. W., and Zhang, X. H. (2013) Profiling of microbial community during in situ remediation of volatile sulfide compounds in river sediment with nitrate by high throughput sequencing. International Biodeterioration & Biodegradation 85: p. 429-437. 
  38. Simpson, Stuart L., Heloise Yverneau, Anne Cremazy, Chad V. Jarolimek, Helen L. Price, and Dianne F. Jolley (2012) DGT-Induced Copper Flux Predicts Bioaccumulation and Toxicity to Bivalves in Sediments with Varying Properties. Environmental Science & Technology, American Chemical Society 46(16): p. 9038-9046.
  39. Wan X., Lei M., Chen T. (2016). Cost-benefit calculation of phytoremediation technology for heavy metal contaminated soil. Sci. Total Environ 563-564, p. 796-802.
  40. Pittarello M., Busato J., Carletti P., Dobbss L. (2017). Possible development for ex situ phytoremediation of contaminated sediments, in tropical and subtropical regions- review. Chemosphere 182:p. 707-719.
  41. Masciandaro G., Biase A., Macci C., Peruzzi E., Iannelli R., Doni S. (2014). Phytoremediation of dredged marine sediment: monitoring of chemical and biochemical processes contributing to sediment reclamation. J. Environ. Manag. 134:p. 166-174.
  42. C. Marchand, M. Mench, Yahya Jani, F. Kaczala, P. Notini, M. Hijri, W. Hogland. (2018). Pilot scale aided-phytoremediation of a co-contaminated soil. Science of The Total Environment 618:p. 753-764.
  43. Charlotte Marchand, William Hogland, Fabio Kaczala, Yahya Jani, Lilian Marchand, Anna Augustsson & Mohamed Hijri. (2016). Effect of Medicago sativa L. and compost on organic and inorganic pollutant removal from a mixed contaminated soil and risk assessment using ecotoxicological tests. International Journal of Phytoremediation 2016,. 18,. 11, p. 1136-1147.
  44. Doni S., Macci C., Peruzzi E., Iannelli R., Ceccanti B., Masciandaro G. (2013). Decontamination and functional reclamation of dredged brackish sediments. Biodegradation 24:p. 499-512.
  45. Vervaeke p., Luyssaert S., Mertens J., Meers E., Tack F. Lust N. (2003). Phytoremediation prospects of willow stands on contaminated sediments: a field trial. Environmental Pollution 126:275-282.
  46. Zhong X., Zhou S., Zhu Q., Zhao Q. (2011). Fraction distribution and bioavailability of soil heavy metals in the Yangtze river delta a case study of Kunshan city in Jiangsu province, China. J. Hazard. Mater 198:p. 13-21.
  47. Li Y., Cai Y. (2015). Mobility of toxic metals in sediments: assessing methods and controlling factors. J. Environ. Sci. 31:203-205.
  48. Yozzo D.J., Wilber P., Will R.J. (2004). Beneficial use of dredged material for habitat creation, enhancement, and restoration in New York–New Jersey Harbor Journal of Environmental Management 73-1: p. 39-52.
  49. Wang L., Chen L., Tsang D.C.W., Li J., Baek K., Hou D., Ding S., Poon C. (2018). Recycling dredged sediment into fill materials, partition blocks, and paving blocks: Technical and economic assessment. Journal of Cleaner Production 199: p. 69-76.
  50. Mymrin V., Stella J.S., Scremim C.B., Pan R.C.Y., Sanches F.G., Alekseev K., Pedroso D.E., Molinetti A., Fortini O.M. (2017). Utilization of sediments dredged from marine ports as a principal component of composite material. Journal of Cleaner Production 142-4: 4041-4049.
  51. Siham K., Fabrice B., Nor Edine A., Patrick D. (2008). Marine dredged sediments as new materials resource for road construction. Waste Management 28-5: p. 919-928.
  52. Maherzi W., Abdelghani F.B., (2014). Dredged marine raw sediments geotechnical characterization for their reuse in road construction. Engineering Journal 18-4: 27-37.
  53. Said I., Missaoui A., Lafhaj Z. (2015). Reuse of Tunisian marine sediments in paving blocks: factory scale experiment. Journal of Cleaner Production 102: p. 66-77.
  54. Mezencevova A., Yeboah N.N., Burns S.E., Kahn L.F., Kurtis K.E. (2012). Utilization of Savannah Harbor river sediment as the primary raw material in production of fired brick. Journal of Environmental Management 113: p. 128-136.
  55. Cappuyns V., Deweirt V., Rousseau S. (2015). Dredged sediments as a resource for brick production: Possibilities and barriers from a consumers’ perspective. Waste Management 38: 372 -380.
  56. Agostini F., Skoczylas F., Lafhaj Z. (2007). About a possible valorisation in cementitious materials of polluted sediments after treatment. Cement and Concrete Composites 29-4: p. 270-278.
  57. Dang T.A., Kamali-Bernard S., Prince W. A. (2013). Design of new blended cement based on marine dredged sediment. Construction and Building Materials 42: p. 602-611.
  58. Couvidat J., Benzaazoua M., Chatain V., Bouamrane A., Bouzahzah H. (2016) Feasibility of the reuse of total and processed contaminated marine sediments as fine aggregates in cemented mortars. Construction and Building Materials 112: p. 892-902.
  59. Benzerzour M., Amar M., Abriak N.E. (2017) New experimental approach of the reuse of dredged sediments in a cement matrix by physical and heat treatment. Construction and Building Materials 140: p. 432-444.
  60. Di Emidio G., Verastegui R.D., Bezuijen A. (2013). Reuse of dredged sediments for hydraulic barriers: adsorption and hydraulic conductivity improvement through polymers. Proceeding of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris: p. 3191-3194.