Sequestration of Copper (II) and Iron (II) Ions from Electroplating Effluent Using Crab Shells Chitosan Stabilized Silver Nanocomposite

Document Type: Original Article

Authors

1 Department of Chemistry, Federal University of Technology Minna, Niger State

2 Department of Chemical Engineering, Federal University of Technology Minna, Niger State

Abstract

This work presents the green preparation of chitosan stabilized silver nanocomposite using aqueous leaf extracts of Nicotiana tobaccum. The prepared chitosan – silver nanocomposite was characterized by the ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), high resolution scanning electron microscopy (HRSEM) and Fourier transform infrared (FTIR) spectroscopy. The nanocomposite was employed to remove copper and iron metal ions from electroplating effluent via batch adsorptions as a function of contact time, adsorbent dosage and temperature. The XRD results of the nanocomposite showed reflections at 2θ of 38.04°, 44.650 and 64.45° for the presence of silver nanoparticles and 9.29° and 19.300 for chitosan. The HRSEM image of the nanocomposite shows the silver nanoparticles embedded in the chitosan polymer matrix, to create pores on the surface of the chitosan. The maximum percentage removal of copper and iron by chitosan – silver nanocomposite were 94.76 % and 98.80 % respectively at temperature of 363 K in 60 minutes using adsorbent dosage of 25 mg. The results were well fitted by all the tested isotherm models but best fit into jovanovic isotherm models. Kinetic data for Cu and Fe ions followed the Elovich model which implies multilayer adsorption. The result of this study show that chitosan - silver nanocomposite has been prepared and it exhibit high adsorption efficiency for copper and iron from electroplating effluent.

Keywords


1. Hajji, Sawssen, Islem Younes, Olfa Ghorbel-Bellaaj, Rachid Hajji, Marguerite Rinaudo, Moncef Nasri, and Kemel Jellouli. "Structural differences between chitin and chitosan extracted from three different marine sources." International Journal of Biological Macromolecules, 65 (2014): 298-306.
2.   Paul, B. T., Clement, G. Y., Anita K. P., Dwayne, J. S (2012). Heavy Metals Toxicity and Environment, National Institute of Health Public Access 101: 133–164.
3.   Ezzat, A. K., Algharib, A .M (2013). Removal of Strontium from Industrial Wastewater using Capsules and Leaves of Castor Been and Jojoba Plants. Zagazig Journal of Agricultural Reasearch, 40, 2, 10 -22.
4.   Yao –Jen, T., Chen-Feng, Y., Zhonghao, Z., Yanping, D., Jing, F., Di, X. U (2014). Strontium Removal in Seawater by emans of Composite Magnetic Nanoparticles Derived from Industrial Sludge, Water, 8, 357.
5.   Ibrahim, U., Akpa, T.C., Daniel, I.H. (2013). Assessment of Radioactivity Concentration in Soil of some |Mining Areas in Central Nasarrawa State, Nigeria, Science World Journal, 8, 2. 1597 – 1623.
6.   Akolo, S.A., Kovo, A.S. (2015) Comparative Study of Adsorption of Copper Ion onto Locally Developed and Commercial Chitosan. Journal of Encapsulation and Adsorption Sciences, 5, 21-37.
7.   GangSeob, J., Zhao, Q., Markus, J. B, (2015). Mechanical Properties and Failure of Biopolymers: Atomistic Reactions to Macroscale Response. Top Current Chemistry, 369: 317–343.
8.   Maduka, H.C.C., Ugwu, C.E., Okpogba, A.N., Oguechel, P.N., Otokpa, J. A., Okonkwo, C. O (2015). The Efficacy of Chitosan Obtained from Nigerian Snail Shell for the Treatment of Wastewater Effluent, Journal of Biodiversity and Environmental Sciences, 7,4,9 -15.
9.   Zhitong Y., Meisheng X., Haiyan, L., Tao, C., Ying, Y., Hao, Z (2014). Bivalve Shell: Not an Abundant Useless Waste but a Functional and Versatile Biomaterial, Critical Reviews in Environmental Science and Technology, 44:2502–2530.
10. Ge, L., Li, Q., Wang, M., Ouyang, J., Li, X., and Xing, M. M(2014). Nanosilver particles in Medical Applications: Synthesis, Performance, and Toxicity, International Journal of Nanomedicine, 9: 2399–2407.
11. Sotiriou, G. A. Sannomiya, T. Teleki, A.  Krumeich, F.  Vörös, J., Pratsinis, S.E. (2010). Non-toxic dry-coated nanosilver for Plasmonic Biosensors, Advanced Functional Material, 21, 20, 24, 4250 – 4257.
12. Wang, Y., Pitto-Barry, A., Habtemariam, A., Romero-Canelon, I., Sadler, P. J., Barry, N. P. E.  (2016). Nanoparticles of Chitosan Conjugated to Organo-Ruthenium Complexes, Inorganic Chemistry Frontier, 3, 1058 - 1064.
13. Ahmad, M. B., Lim, J. J., Shameli, K., Ibrahim, N. A., Tay, M.Y. (2011). Synthesis of Silver Nanoparticles in Chitosan, Gelatin and Chitosan/Gelatin Bionanocomposites by a Chemical Reducing Agent and Their Characterization, Molecules, 16, 7237 - 7248.
14. Astalakshmi, A., Nima, P., and Ganesan, V. (2013) A green approach in the synthesis of silver nanoparticles using bark of Eucalyptus globulus, Labill, International Journal Pharmaceutical Scientic Research, 23, 1, 47 - 52.
15. Shameli, K., Ahmad, M.B.  Zargar, M., Yunus, W.M., Ibrahim, N.A., Shabanzadeh, P., Moghaddam, M.G. (2011). Synthesis and Characterization Silver/ Montmorillonite/ Chitosan Bionanocomposites by Chemical Reduction Method and their Antibacterial activity, International Journal Nanomedicine, 6, 271 - 284.
16. Gunatilake S.K., (2015). Methods of Removing Heavy Metals from Industrial Wastewater, Journal of Multidisciplinary Engineering Science Studies, 1, 1, 1 -7.
17. Arivoli, S., Marimuthu, V., Mohamed, A. R. J (2013). Kinetics of Batch Adsorption of Iron (II) ions from Aqueous Solution using Activated carbon from Strychnos Nux-Vomica – L, International Journal of Scientific and Engineering Research, 4, 12, 407 -417.
18. Murthy, C. R., Ramesh, P., Ramesh, A  (2011). Study of Biosorption of Cu (II) from Aqueous Solutions by Coconut Shell Powder. Chemical ScienceJournal, 17: 1 - 15.
19. Priyanka T., Mahesh C. V., Sushil K. J., Harish S., Narendra S. B. (2017). Adsorption of Pb (II), Cu (II), and Zn (II) Ions onto Urtica dioica Leaves (UDL) as a Low Cost Adsorbent: Equilibrium and Thermodynamic Studies, Modern Chemistry, 5 (1).
20. Vijayakumar, A., Tamilarasan, R., Dharmendirakumar, M (2012). Adsorption, Kinetic, Equilibrium and Thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solution by the use of natural adsorbent perlite, Journal Material Environmental Science 3, 1, 157 - 170.
21. Hakan, D., Cihan, G.  (2016). Adsorption of copper (II) from aqueous solutions on activated carbon prepared from grape bagass, Journal of Cleaner Production, 124, 103-113.
22  Md. Sayedur R., Kathiresan, V. S (2015). Heavy Metal Adsorption onto Kappaphycus sp. From  Aqueous Solutions: The Use of Error Functions for Validation of Isotherm and Kinetics Models. Hindawi Publishing Corporation, BioMed Research International Volume 2015, 13 pages, http://dx.doi.org/10.1155/2015/126298.
23. Arshadi, M., M. J. Amiri, and Sajjad Mousavi. "Kinetic, equilibrium and thermodynamic investigations of Ni (II), Cd (II), Cu (II) and Co (II) adsorption on barley straw ash." Water Resources and Industry, 6 (2014): 1-17.
24. Foo, K. Y., Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems, Chemical Engineering Journal. 156 (1): 2–10
25. Tan, I.A.W. and Hameed, B. H. (2010). Adsorption Isotherms, Kinetics, Thermodynamics and Desorption Studies of Basic Dye on Activated Carbon Derived from Oil Palm Empty Fruit Bunch, Journal of Applied Sciences, 10, 21, 2565 – 2571.
26. Hokkanen, S., Repo, E., Suopajärvi, T., Liimatainen, H., Niinimaa, J., Sillanpää, M., (2014). Adsorption of Ni (II), Cu (II) and Cd (II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose, 21 (3):1471-1487.
27. Wang J, Wei L, Ma Y, Li K, Li M, Yu Y, Wang L, QiuH (2013). Collagen/cellulose hydrogel beads reconstituted from ionic liquid solution for Cu (II) adsorption. Carbohydrate Polymer, 98 (1):736 - 43.
29. Radnia, Hamideh, Ali Asghar Ghoreyshi, and Habibollah Younesi. "Isotherm and kinetics of Fe (II) adsorption onto chitosan in a batch process." Iranica Journal of Energy and Environment 2, no. 3 (2011): 250-257.
30. Adebayo, G. B., Mohammed, A. A., Sokoya, S. O (2016). Biosorption of Fe (II) and Cd (II) ions from aqueous solution using a low cost Adsorbent from Orange Peels, Journal of Applied Science and Environmental Management, 20 (3): 702-714.
31. Rahmi, F. I., Arie Purnaratrie (2015). Comparative Adsorption of Fe (III) and Cd(II) ions on Glutaraldehyde Cross-linked Chitosan–coated Cristobalite. Oriental Journal of Chemistry, 31 (4); 2071 – 2076.
32. Kose, T. D., Gharde, B. D., Gholse, S. B. (2012) Studies on Albizia procera legumes for effective removal of Fe (II) and Mn (II) from aqueous solution. Journal of Chemical and Pharmaceutical Research, 4 (4): 2021-2028
33. Areco, M. M., Afonso, M. S. (2010), Copper, zinc, cadmium and lead biosorption by Gymnogongrus torulosus: thermodynamics and kinetics studies, Biointerfaces, 81, 620–628.
34. Al-Sultani, K.F., Al-Seroury, F.A (2012). Characterization the Removal of Phenol from Aqueous Solution in Fluidized Bed Column by Rice Husk Adsorbent. Revised Journal of Recent Science, 1:145-151.
35. Das, B., Mondal, N. K., Bhaumik, R., Roy, P. (2014). Insight into adsorption equilibrium, kinetics and thermodynamics of lead onto alluvial soil. International Journal Environmental Science Technology, 11, 1101–1114.
36. Weiner, E. R. (2012). Applications of Environmental Aquatic Chemistry: A Practical Guide; CRC Press: Boca Raton, FL, USA, 2012.
37. Gupta, V.K., Agarwal, S., Saleh, T. A. (2011). Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. Journal of Hazard Material, 185, 17– 23.
38. Enos W. W., Stephen, A., Paul, M. S., John W. (2018). Removal of Heavy-Metals from Wastewater using a Hydrous Alumino-Silicate Mineral From Kenya, Bulletin of Chemical Society of Ethiopia, 32(1), 39-51.
39. Rathod M., Mody K., Basha S. (2014). Efficient removal of phosphate from aqueous solutions by red seaweed, Kappaphycus alverezii, Journal of Cleaner Production, 84 (1): 484–493.
40. Plaza Cazón J, Viera M, Donati E, Guibal E (2013). Zinc and cadmium removal by biosorption on Undaria pinnatifida in batch and continuous processes, Journal of Environmental Management, 15 (129): 423-434.
41. Meitei M. D., Prasad M. N. V. (2014). Adsorption of Cu (II), Mn (II) and Zn (II) by Spirodela polyrhiza (L.) Schleiden: equilibrium, kinetic and thermodynamic studies. Ecological Engineering, 71: 308–317.
42. Maksin D. D., Kljajević S. O., Dolić M. B., (2012). Kinetic modelling of heavy metal sorption by vinyl pyridine based copolymer. Hemijska Industrija, 66 (6):795–804.
43. Somasundaram, S., Sekar, K., Gupta, V. K., & Ganesan, S. (2013). Synthesis and characterization of mesoporous activated carbon from rice husk for adsorption of glycine from alcohol-aqueous mixture. Journal of Molecular Liquids, 177, 416-425.
44. Surchi, K.M.S., (2011). Agricultural Wastes as Low Cost Adsorbents for Pb Removal: Kinetics, Equilibrium and Thermodynamics, International Journal of Chemistry, 3(3): 103-112
45. Radnia, Hamideh, Ali Asghar Ghoreyshi, Habibollah Younesi, and Ghasem D. Najafpour. "Adsorption of Fe (II) ions from aqueous phase by chitosan adsorbent: equilibrium, kinetic, and thermodynamic studies." Desalination and Water Treatment 50, no. 1-3 (2012): 348-359.
46. Sharma, Deepali, Suvardhan Kanchi, and Krishna Bisetty. "Biogenic synthesis of nanoparticles: A review." Arabian Journal of Chemistry (2015).