Adsorptive Removal of Methylene Blue Dye from Aqueous Solutions using CoFe$_{1.9}$Mo$_{0.1}$O$_4$ Magnetic Nanoparticles

I. A. Amar1,2*, A. Sharifi1, M. M. Alkhayali1, M. A. Jabji1, F. Altohami1, M. A. Abdul Qadir1 and M. M. Ahwidi1

1 Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya
2 Central Laboratory at Sebha University, Sebha, Libya

PAPER INFO

ABSTRACT

In this study, the adsorption properties of spinel ferrite-based adsorbent, CoFe$_{1.9}$Mo$_{0.1}$O$_4$ (CFMo), for the removal of methylene blue (MB) from aqueous solution were investigated. Sol-gel process was successfully employed to prepare CoFe$_{1.9}$Mo$_{0.1}$O$_4$ magnetic nanoparticles. The synthesized adsorbent was characterized by Fourier transform infrared (FTIR), scanning electron microscope (SEM) and X-ray diffraction (XRD). The adsorption experiments were carried out at various operational conditions (solution pH, initial dye concentration, contact time, adsorbent dosage and temperature) to evaluate the potential adsorption property of CFM0 magnetic nanoparticles. The results showed that, under the optimum adsorption parameters, approximately 95% of MB dye can be removed. The adsorption data were described by Langmuir isotherm model and the maximum amount of MB adsorbed was about 20.45 mg/g. Several adsorption kinetic models and thermodynamic parameters (ΔH°, ΔS°, ΔG°) were used to fit the adsorption experimental data. The adsorption kinetics followed the pseudo-second-order model (PSO), while the thermodynamic parameters indicate that the proposed adsorption process was endothermic and spontaneous in nature. The obtained results suggest that CFM0 is promising adsorbent material for the removal of very toxic dyes from aqueous solutions.

INTRODUCTION

Synthetic dyes are considered as one of the most dangerous water pollutants because of their detrimental effects on human health and aquatic life [1]. These organic dyes have been used extensively as colorants in many industries such as textile, leather, paper, plastics and cosmetics, etc. [2, 3]. These industries are responsible for discharging considerable amount of dye-contaminated water into aqueous systems [3, 4]. Most of these dyes are toxic in nature and have carcinogenic, mutagenic and teratogenic effects [5, 6]. Methylene blue (MB), known also as tetramethylthiuram chloride (Figure 1), is a cationic dye which commonly used in textile industry for dyeing silk, wood and cotton. The acute exposure to MB can cause nausea, vomiting, increased heart rate, cyanosis, jaundice, profuse sweating, quadriplegia and mental confusion, etc. [2, 3]. Therefore, the treatment of effluents containing methylene blue before being released into aqueous systems is of environmental significance.

Various water treatment technologies have been developed in attempts to remove toxic synthetic dyes from contaminated water before drainage. These include; coagulation-flocculation, oxidation, membrane filtration, adsorption, ion-exchange, ozonation, photocatalytic degradation, electrochemical degradation and biological treatment [3, 4]. Compared to the aforementioned techniques, adsorption is preferred because of its unique properties such as; availability, simplicity of design, low operational cost, ease of operation, insensitivity to toxic pollutants, treating various types of dyes, no secondary pollutant formation and high removal efficiency [3, 5, 7-9]. Activated carbon (AC) is the most commonly used adsorbent by many dye manufacturing factories owing to its remarkable properties (e.g., porous structure, large surface area, good adsorption performance). However, the use of AC is limited due to the problems associated with its high production cost, sludge formation and regeneration or disposal [2, 5]. This highlights the need for exploring new adsorbents which are cheap, efficient and separated easily from adsorption media, easily recovered and reused.

*Corresponding author: I. A. Amar, E-mail: ibr.amar@sebhau.edu.ly

Figure 1. Molecular structure of methylene blue dye
In recent years, magnetic nanoparticles (MNPs), in particular
spinel ferrites nanoparticles (SFNPs), have attracted
considerable attention due to their unique properties
including: diverse structures, moderate saturation
magnetization, chemical and thermal stabilities, small amount
is required, high sensitivity, efficiency, cost-effective, fast
adsorption kinetics, ease of functionalization, ease of
recovery and reuse, no filtration is required and ease of
separation after adsorption using an external magnetic field,
etc.[9-12]. In this regard, several spinel ferrites and spinel
doped ferrite nanocomposites (SFNCs) including; NiFe₂O₄ [13],
MnFe₂O₄ [14], Mn₀.₉Mn₀.₁Fe₂O₄ [15],
Mn₀.₉Zn₀.₁Fe₂O₄/activated carbon [16] and XFe₂O₃/graphene
oxide (X = Co, Mn, Ni) [17] have been employed as adsorbent
materials for treating of methylene blue dye-contaminated
water. Among spinel ferrites, cobalt ferrites (CoFe₂O₄) are
regarded as promising candidate materials for the application
as adsorbents in the field of water treatment technologies. In
addition, it has been reported that the adsorption performance
of FeCo₂O₄ could be enhanced by partial substitution of Fe³⁺
by other element (e.g., P³⁺, Gd³⁺, A¹⁺, In³⁺, Ni²⁺, Cu⁺, etc.)
[18-21]. In a recent study, Mohamed et al. [22] have
successfully synthesized and studied the magnetic properties
of Mo-substituted cobalt ferrite (CoFe₂ₓMoₓO₄, x = 0.04-
0.3). Based on the previous discussion, it is expected that Mo-
doped CoFe₂O₄ would be a promising adsorbent material
and can be employed for the removal of very toxic dyes from
wastewater. However, to the best of our knowledge, there is
no report on using Mo-doped CoFe₂O₄ magnetic
nanoparticles as an adsorbent for the removal of methylene
blue. Thus, the present work aims to synthesize Mo-
substituted CoFe₂O₄ and to investigate its ability for removing
of methylene blue from aqueous systems.

MATERIALS AND METODS
Materials
Methylene blue dye (C₁₆H₁₄ClN₃S·xH₂O, x = 2-3) was purchased from ScP (Surechem products). Iron nitrate
nonahydrate (Fe(NO₃)₃·9H₂O) was purchased from Berck
and Scientific Supplies. Cobalt nitrate (Co(NO₃)₂·6H₂O) was purchased from Analyticals. Ammonium molybdate
((NH₄)₂MoO₄·2H₂O), Hydrochloric acid (HCl) and sodium
chloride (NaCl) were purchased from purchased from BDH
Chemical. Citric acid (C₆H₈O₇·2H₂O) was purchased from Labkem.
Sodium hydroxide (NaOH) was purchased from Fluka.
Ethylene diamine tetraacetic acid, EDTA, (C₁₀H₁₈N₂O₈) was
purchased from Serva. Amonia solution (35%) was purchased from Scharlau. All chemical in this work were used
as supplied.

Synthesis of CoFe₂₁ₓMo₀₁₋ₓO₄ nanoparticles
Spinel-based oxide nanoparticles in the form of
CoFe₂₁ₓMo₀₁₋ₓO₄ (CFMo) was synthesized via sol-gel process
[23]. Initially, accurately weighed amounts of Co(NO₃)₂·6H₂O, Fe(NO₃)₃·9H₂O and (NH₄)₂MoO₄·2H₂O were dissolved in a minimum amount deionized water. EDTA
and citric acid were then added to the mixed solution as
complexing agents at a molar ratio of metal cations: EDTA :
citric acid of 1:1:1.5. The pH of the mixed solution was
adjusted to around 6 by adding a diluted ammonia solution.
The mixture was placed on a hot-plate and magnetically
stirred under heating before getting a black sticky gel. Then,
a solid product was obtained by further heating the gel
precursor to dryness. Finally, the dried gel was heat treated
in air at 600 °C for 3 h to get the desired magnetic nanoparticles
(CoFe₁₉Mo₀₁O₄).

Characterization of CoFe₁₉Mo₀₁O₄ nanoparticles
X-ray diffraction (XRD) pattern of CoFe₁₉Mo₀₁O₄ was
collected at room temperature using a Philips — PW 1800
diffrectometer with Ni-filtered CuKα radiation (λ=1.54186
Å) at scanning angle of 1.4 to 79.4°, with a step size of 0.02°.
The lattice constant (d, Å) and the crystallite size (D, nm) of
CoFe₁₉Mo₀₁O₄ nanoparticles were estimated using Equations 1 and 2, respectively [24].

\[
a = d_{\text{pol}} \sqrt{h^2 + k^2 + l^2}
\]

\[
D = \frac{0.94 \lambda}{\beta \cos \theta}
\]

where hkl are the Miller indices, d is the interplanar distance,
λ is the X-ray wavelength, θ is the Bragg angle for diffraction
peak and β is the full width at half maximum (FWHM) for
diffraction peak in radiance.

Fourier transform infrared spectrum (FTIR) of CFMo
nanoparticles was recorded using KBr pellet method in the
range of 400-4000 cm⁻¹ using a Bruker Tensor 27
spectrophotometer. A LEO 1430PV Scanning Electron
Microscope (SEM) was used to examine the surface
morphology of the prepared adsorbent. The pH at the point
zero charge (pHzpc) of the CFMO magnetic nanoparticles
was determined using drift method [25]. The initial pH value (pHᵢ)
of NaCl solution (0.1 mol/L) was adjusted to 3, 5, 7, 9, and 11
by adding either a 0.1 mol/L HCl or NaOH solution. Then,
0.1 g of CFMO magnetic nanoparticles was added to 25 mL
of NaCl solution. After shaking for 24 h, the CFMO material
easily separated magnetically from NaCl solution and the
final pH value (pHₐ) was determined. Finally, the pHₐ-pHᵢ
was estimated from the intersection point of the plot of ∆pH (pHₐ-
pHᵢ) against pHᵢ [26].

Adsorption studies
a) Adsorption experiments
The stock solution of MB at concentration of 500 mg/L was
prepared by dissolving accurately weighed amounts of MB
into the required volume of deionized water. The desired
concentrations of the working solutions were obtained by
diluting the prepared stock solution. Batch mode was chosen
to carry out all dye adsorption experiments and 25 mL
Erlenmeyer flasks were used for this purpose. Each flask was
filled with a 20 mL of MB solution, sealed tightly and placed
in an orbital shaker (IKA-Werke) and shaken for a certain
time at speed of 320 rpm. The adsorption experiments were

248
After each adsorption experiment, the residual concentration of MB in the solution was measured using a single beam UV-vis spectrophotometer (Jenway model 6305, UK) at the maximum wavelength (λ_{max}) of 662 nm [2]. The amount of MB adsorbed at any time t (q_t, mg/g), the amount of MB adsorbed at equilibrium (q_e, mg/g) and the percentage removal of MB (%R) were calculated using the following equations [6, 27]:

$$q_e = \frac{V(C_o - C_e)}{m}$$ \hspace{1cm} (3)

$$q_t = \frac{V(C_o - C_t)}{m}$$ \hspace{1cm} (4)

$$\%R = \frac{C_o - C_e}{C_o} \times 100$$ \hspace{1cm} (5)

where C_o is the initial dye concentration (mg/L), C_e and C_t are the final dye concentration (mg/L) at any time t and at equilibrium, respectively. V is the volume of dye solution (L) and m is the adsorbent dose (g). The adsorption experiments were repeated three times and the data were reported as the mean ± SD.

b) Kinetic models
To better understand the adsorption process kinetics, two most widely used kinetic models including pseudo-first-order (PFO) [28] and pseudo-second-order (PSO) [29] were applied to fit the obtained experimental data. The linear forms of PFO (Equation 6) and PSO (Equation 7) can be expressed as follows [30]:

$$\ln(q_e - q_t) = \ln q_e - K_i t$$ \hspace{1cm} (6)

$$\frac{t}{q_t} = \frac{1}{K_2q_e} + \frac{1}{q_e}$$ \hspace{1cm} (7)

where q_e and q_t are as indicated previously. K_i (min$^{-1}$) and K_2 (g/mg min) are the rate constants PFO and PSO, respectively. From the intercept and slope of the plot of $\ln(q_e - q_t)$ versus t, respectively, the values of q_e and K_i can be calculated. The intercept and the slope of plot of t/q_t versus t were used to calculate the values of K_2 and q_e, respectively.

c) Adsorption Isotherm models
In this study, Langmuir [31] and Freundlich [32], the most frequently isotherm models, were employed to describe the nature of the interaction between adsorbent and adsorbate. These empirical isotherm models were applied to fit the obtained experimental adsorption data at varying initial dye concentration (50-250 mg/L). Langmuir isotherm model is applicable for describing monolayer adsorption that occurs on homogeneous surface [7]. Equation 8 expresses the linearized form of Langmuir equation, as described below [30]:

$$\frac{C_e}{q_e} = \frac{1}{q_{\text{max}}K_L} + \frac{1}{q_{\text{max}}}C_e$$ \hspace{1cm} (8)

where q_{max} is the maximum amount of MB adsorbed (mg/g) and K_L is Langmuir constant (L/mg). From the linear plot of C_e/q_e against C_e/q_{max}, the slope and the intercept can be used to calculate the values of q_{max} and K_L, respectively. The feasibility of Langmuir adsorption isotherm can be evaluated using a constant known as the separation factor (R_L). The value of R_L (dimensionless) can be calculated using following equation [30]:

$$R_L = \frac{1}{1 + K_Lq_e}$$ \hspace{1cm} (9)

The value of R_L indicates whether the type of the isotherm to be either favourable ($0 < R_L < 1$), unfavourable ($R_L > 1$), linear ($R_L = 1$) or irreversible ($R_L = 0$) [30].

Freundlich isotherm model is based on the assumption that the multilayer of the adsorption process takes place on heterogeneous surface [7]. The linearized form of Freundlich equation is as given below [30]:

$$\ln q_e = \ln K_f + \frac{1}{n} \ln C_e$$ \hspace{1cm} (10)

where K_f is Freundlich constant ((mg/g)/(mg/L)n), n is the adsorption intensity (dimensionless) that indicates the surface heterogeneity. The values of n can be also used to verify types of adsorption. The adsorption process is linear ($n = 1$), unfavourable ($n > 1$), favourable ($n < 1$) and irreversible ($n = 1$) [30]. The value of n was calculated from the slope (1/n), while the value of K_f was calculated from the intercept ($\ln K_f$) of the linear plot of $\ln C_e$ against $\ln q_e$.

d) Adsorption thermodynamics
The thermodynamic parameters such as Gibb’s free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were determined using the following equations [30, 33]:

$$\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ$$ \hspace{1cm} (11)

$$\ln K_c = \frac{-\Delta H^\circ}{R} \frac{1}{T} + \frac{\Delta S^\circ}{R}$$ \hspace{1cm} (12)

$$K_c = \frac{C_o}{C_e}$$ \hspace{1cm} (13)

where K_c is a constant called the distribution coefficient and determined using Equation 13, C_c is the MB concentration (mg/L) on the adsorbent surface, T is absolute temperature (K), and R is the gas constant (8.314 J/mol/K). The slope and the intercept of the plot of $\ln K_c$ versus (1/T) were used to calculate the values of ΔH° (kJ/mol) and ΔS° (kJ/mol), respectively.

RESULTS AND DISCUSSION
Characterization of the adsorbent
Figure 2 represents the characteristics of the prepared adsorbent (CoFe$_2$Mo$_3$O$_{12}$. CFM). Figure 2a shows the XRD pattern of CoFe$_2$Mo$_3$O$_{12}$ magnetic nanoparticles after firing its corresponding ash in air at 600 °C for 3 h. As shown from the XRD pattern, all diffraction peaks are well indexed to characteristic reflections of magnetite with a cubic structure (JCPDS card No. 19-0629). In addition, no extra peaks were observed indicating the formation of a single phase of spinel ferrites (CFM). The XRD data of the strongest peak (311) were used to calculate the values of CFM structural parameters including lattice constant (a), the
volume of the unit cell \((a)^3\) and crystallite size \((D)\). The calculated values of \(a\), \(a^3\) and \(D\) were found to be 8.2786 Å, 567.38 \((Å)^3\) and 47.40 nm, respectively.

Figure 2b shows the FTIR spectrum of CFMo nanoparticles. As can be seen from the spectrum, the characteristic band of all spinel ferrites was observed at 586 cm\(^{-1}\). This absorption band is ascribed to metal-oxygen (Fe-O) vibration. The observed peaks in the range of 815 to 1122 cm\(^{-1}\) can be assigned to NO\(_3^−\) group vibration. In addition, the band located at 1632 cm\(^{-1}\) is ascribed to O-H bending vibrations, while that observed at 3415 cm\(^{-1}\) is assigned to O-H stretching vibrations [27, 34, 35]. Figure 2c shows the SEM image of CoFe\(_{1.9}\)Mo\(_{0.1}\)O\(_4\) magnetic nanoparticles. As shown, the morphology of the prepared adsorbent (CFMo) consists of a heterogonous nanostructure. It can be also seen from the SEM image that CFMo magnetic nanoparticles form some agglomerates as a result of their particle-particle interactions [19, 35].

The pH at the point zero charge \((PZC)\) of CFMo nanoparticles was found to 6.35 as presented in Figure 2d. This means that the adsorbent surface (positively charged) and MB cations (positive ions). On the other hand, the high \(%R\) and \(q_e\) values at \(pH\) 7 (\(pH > 6.35\)) could be due to the increase in the electrostatic attraction between the cationic dye (positive ions) and the negatively charged surface of CFMo. As reported by Al-Anber et al. [37], MB dye which contains Cl\(^−\)(MB-S\(^{−}\)Cl\(^−\)) and NaOH (for pH adjustment) are expected to undergo replacement reaction and resulting in the formation of NaCl and (MB-S\(^{−}\)OH\(^−\)). Therefore, the decreased values of \(%R\) and \(q_e\) at \(pH\) values above 7 (\(pH > pH_{PZC}\)) could be due to the increase in the solution ionic strength as a result of NaCl formation.

b) Effect of contact time

The effect of contact time on the \(q_e\) (mg/g) and \%R of MB was investigated by changing the contact time and keeping the other experimental parameters at constant values (\(pH\) value 7, adsorbent dose of 0.01 g/20 mL and initial MB concentration of 100 mg/L) and the results are shown in Figure 4. As can be seen, the \(q_e\) value is increased with increasing the contact time and reaching a maximum value of about 98.40 mg/g at 30 min. However, when the contact time was further increased above 30 min, the \(q_e\) value decreased slightly (almost to a constant value), which may due to saturation of all available active binding sites [38]. It can also be seen from Figure 4 that the maximum \%R value (43%) was attained at 60 min period of time.

![Figure 3](image_url)
Figure 3. Effect of initial \(pH\) on the MB removal percentage and adsorption capacity

![Figure 4](image_url)
Figure 4. Effect of the contact time on the MB removal percentage and adsorption capacity

c) Effect of adsorbent dose

The effect of CFMo quantity on the \%R of MB dye and the equilibrium adsorption capacity \((q_e, \text{mg/g})\) was investigated in batch experiment by varying the amount of the adsorbent.
(CFMo) from 0.01 to 0.25 g/20 mL and keeping the other parameters constant (dye solution pH at 7, dye concentration at 100 mg/L and contact time at 60 min). As can be seen from Figure 5, the %R of MB increased significantly from 38.94 % (adsorbent dose 0.01 g/20 mL) to 95.35 % (adsorbent dose 0.20 g/20 mL). This could be due to the fact that the numbers of binding sites which are available for adsorbing MB molecules are increased as the adsorbent dose is increased [6]. However, by further increasing the adsorbent dose above 0.15 g/20 mL, no significant increase in the %R of MB was observed and a highest value of about 95.35 % was obtained at adsorbent amount of 0.20 g/20 mL. Therefore, this optimum adsorbent dose (0.20 g/20 mL) was used for the subsequent experiments. It can be also be seen from Figure 5, that increasing the amount of the adsorbent from 0.01 to 0.25 g/20 mL leads to a significant decrease in the \(q_e \) from 96.63 to 8.28 mg/g. This could be due to the fact that, during adsorption process, the available adsorption sites remain unsaturated [39].

d) Effect of the initial dye concentration
The effect of the initial dye concentration was studied by varying MB concentration from 50 to 250 mg/L and keeping the other operational condition at the optimized values. Figure 6 shows the dependence of the %R and the \(q_e \) of MB dye on the initial MB concentration. As can be seen, no significant difference in the %R of MB was observed with increasing the initial concentration from 50 to 100 mg/L. However, the %R of MB decreased as the initial concentration was further increased from 100 to 250 mg/L and reached a minimum value of about 70.84 % at 250 mg/L. This decrease could be due to the fact that the active adsorption sites of the adsorbent (CFMo) became saturated after adsorption of certain concentration of MB [40].

Therefore, the optimum MB concentration was chosen to be 100 mg/L. In contrast to the %R of MB, the \(q_e \) value increased significantly from 4.89 to 19.12 mg/g as the initial dye concentration was increased from 50 to 250 mg/L, as shown in Figure 6. This can be explained by the fact that, at a fixed adsorbent dose, the high initial concentration of the dye will provide the required driving to transfer the MB molecules from the bulk liquid phase to the surface of solid adsorbent [8, 41, 42]. In addition, the increase in the value of

\[q_e \] might be due to the enhancement in the adsorbent-dye interaction as a consequence of increasing the initial dye concentration [8].

e) Effect of solution temperature
The effect of solution temperature on adsorption process of MB dye onto CFMo magnetic nanoparticles was investigated at various temperatures (25, 35 and 45 °C) and under the above mentioned optimized operational conditions. As can be seen from Figure 7, increasing the solution temperature resulted in decreasing both the %R of MB and the \(q_e \) value. This might be due to fact that, by increasing the solution temperature, the kinetic energy of dye molecules will be increased, thus weakening the interaction between the dye molecules and the binding sites of the adsorbent magnetic nanoparticles [39]. This decrease in the %R and \(q_e \) values with temperature indicates the exothermic nature of the proposed adsorption process [7].

Adsorption kinetics
The adsorption kinetic of MB on the surface of CFMo was evaluated by linear pseudo-first-order (PFO) and pseudo-second-order (PSO) models (Figure S1). The fitting parameters of the models are listed in Table 1.

In contrast to the PFO model, the calculated \(q_e \) value obtained from PSO model is close to the experimental \(q_e \) value (Table 1). It can also be seen from Table 1 that, the correlation coefficient (R²) value of PSO model (0.9975) is higher than that of PFO. This means that the proposed adsorption process is better described by the PSO kinetic model.
Adsorption isotherms
Langmuir and Freundlich isotherm models were used to fit the experimental adsorption data of MB onto CFMo nanoparticles (Figure S2). Table 2 lists the calculated parameters of these isotherm models. The calculated values of separation factor (R_f) at different initial dye concentration (50-250 mg/L) were less than unity (0.151-0.033). This indicates the favourability of Langmuir isotherm to describe the adsorption process [7]. It is to be also noted from Table 2 that the correlation coefficient (R^2) value of Langmuir isotherm model (0.9706) is higher than that of Freundlich isotherm model (0.7788). This suggests that the Langmuir isotherm model is favourable to describe the adsorption process. In addition, the maximum adsorbed amount of MB (q_{max}) determined from Langmuir isotherm was about 20.45 mg/g. Table 3 represents a comparison of the maximum adsorbent amount of MB onto different adsorbents [2, 13-15, 43-45]. The obtained results suggest that CFMo is promising adsorbent material for the removal of very toxic cationic dye (MB) from wastewater.

Adsorption Thermodynamics
The Gibb’s free energy (ΔG°) was calculated using Equation 11, whereas the values of the (ΔS°) and enthalpy (ΔH°) respectively, were calculated from the intercept and slope of Van’t Hoff plot of $\ln K_c$ versus $1/T$ (Figure S3). Table 4 lists the values of the calculated thermodynamic parameters. The value of ΔG° was negative, indicating the feasibility and the spontaneous nature of the proposed adsorption process. The observed decrease in negative values of ΔG° with the increase in the dye solution temperature implies that higher temperature is less favourable for the MB adsorption. The negative value of ΔH° substantiated the exothermic nature of MB adsorption process. Furthermore, the obtained value of ΔH° was found to be -24.17 kJ/mol, indicating a physical adsorption.

Table 1. Kinetic parameters for the adsorption of MB onto CFMo nanoparticles			
q_e, exp (mg/g)	q_e, cal (mg/g)	k_1 (min$^{-1}$)	R^2
90.94	39.26	1.28 $\times 10^{-2}$	0.2513
q_e, cal (mg/g)	k_2 (g/mg.min)	R^2	
85.25	9.04 $\times 10^{-1}$	0.9975	

Table 2. Adsorption isotherm parameters for adsorption of MB onto CFMo nanoparticles			
Langmuir isotherm	q_{max} (mg/g)	K_L (L/mg)	R^2
20.45	0.109	0.9706	
Freundlich isotherm	K_F (mg/g)/(mg/L)a	n	R^2
4.50	2.95	0.7788	

Table 3. Comparison of the maximum adsorption capacities of MB onto various adsorbents		
Adsorbent	q_{max} (mg/g)	Reference
PANI-NiFe$_2$O$_4$	3.31	[43]
ZMC	4.44	[2]
CLP	6.36	[2]
CoFe$_2$O$_3$/MWCNTs	14.28	[44]
CoFe$_2$O$_3$/Zn$_{0.1}$O$_{1-x}$	20.45	This study
MnFe$_2$O$_4$	20.7	[14]
Zno/ZnFe$_2$O$_4$	37.27	[45]
Mn$_{0.1}$Zn$_{0.9}$Fe$_2$O$_4$	40.97	[15]
NiFe$_2$O$_4$	138.5	[13]

Table 4. Thermodynamic parameters for adsorption of MB onto CFMo nanoparticles				
ΔH° (kJ/mol)	ΔS° (J/mol.K)	ΔG° (kJ/mol)		
298 K	308 K	318 K		
-24.04	-55.98	-7.36	-6.80	-6.24

CONCLUSION

In summary, spinel ferrite magnetic nanoparticles (CoFe$_{1-x}$Mn$_x$O$_4$, CFMo) were successfully synthesized via a sol-gel process. The XRD revealed that a single-phase spinel oxide was obtained when the gel precursor was calcined in air at 600 ºC for 3 h. The adsorption property of CFMo for the removal of MB was investigated under different operational conditions, while about 95 % of MB was removed at pH of 7, contact time of 60 min, adsorbent dosage of 0.2 g/20 mL, initial dye concentration of 100 mg/L and room temperature (25 ºC). The kinetic studies revealed that the data followed the pseudo-second-order kinetic model. The equilibrium of adsorption of MB onto CFMo was better described by Langmuir isotherm model and the maximum adsorbed amount of MB was found to be 20.45 mg/g. The thermodynamic studies indicated that the adsorption of MB onto CFMo was feasible, spontaneous, physical and exothermic in nature. The obtained results suggest that CFMo is promising adsorbent for the adsorptive removal of toxic dyes from wastewater.

ACKNOWLEDGEMENTS

The authors would like to thank the Department of Chemistry, Sebha University, Libya for the financial support of this work. The authors are thankful to Libyan Petroleum Institute,
Tripoli, Libya for performing XRD and SEM analysis. The authors also thank Mr. FathiElsharif and Mr. Khaled Azzabi from the Nuclear Research Center, Tajoura, Libya for performing FTIR analysis.

CONFLICT OF INTEREST

We have no conflicts of interest to disclose.

REFERENCES

