Effect of Mn Doping on Fe3O4 Nanoparticles Synthesized by Wet chemical Reduction Technique

Document Type: Original Article


1 P. G. Department of Physics, Sardar Patel University, Vallabh Vidyanagar – 388120, Gujarat, India

2 Applied Physics Department, S.V.N.I.T., Surat – 395007, Gujarat, India


The effect of Mn doping on Fe3O4 nanocrystalline spinel particles is studied. Two doping concentrations of 10 and 15% Mn were employed. The nanoparticles synthesis was carried out by wet chemical reduction technique. The energy dispersive analysis of X-ray confirmed the stoichiometry of the samples. The X-ray diffraction technique was used to determine the crystal structure and particles size of the synthesized nanoparticles. The electron microscopy revealed that both the synthesized nanoparticles surfaces have flower-like patterns and the particles are spherical. The optical absorption study showed that the absorption is more in case of 10% Mn doped compared to 15% Mn doped Fe3O4 nanoparticles. The Fourier transform infra-red spectroscopy revealed that both the samples contain characteristics bands. The magnetization variation with temperature with zero field cooled and field cooling conditions for two different applied magnetic fields of 500 Oe and 1000 Oe as well as the hysteresis study was carried out by vibrating sample magnetometer technique. The obtained results are discussed in details.


  1. S. Kaka, M. Pufall, W. Rippard, T. Silva, S. Russek, and J. Katine, 2005, Mutual phase-locking of microwave spin torque nano-oscillators.  Nature. 437, 389-392.
  2. H. Lee, M. Huh, Y. Jun, J. Seo, J. Jang, T. Song, S. Kim, J. Cho, G. Yoon, S. Suh, J. Cheon, 2007, Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging.  J. Nat. Med. 13, 95-99.
  3. J. Park, E. Lee, N. Hwang, M. Kang, S. Kim, Y. Hwang, J. Park, H. Noh, J. Kim, J. Park, and T. Hyeon, 2005, One-Nanometer-Scale Size-Controlled Synthesis of Monodisperse Magnetic Iron Oxide Nanoparticles. Angew. Chem., Int. Ed. 44, 2872-2877.
  4. C. Yavuz, J. Mayo, W. Yu, A. Prakash,  J. Falkner,  S. Yean, L. Cong, H. Shipley, A. Kan, M. Tomson, D. Natelson, V. Colvin, 2006, Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science. 314, 964-967.
  5. N. Pinna, S. Grancharov, P. Beato, P.  Bonville, M. Antonietti, M. Niederberger, 2005, Magnetite Nanocrystals: Nonaqueous Synthesis. Characterization, and Solubility, Chem. Mater. 17, 3044-3049.
  6. Z. Li, L. Wei, M. Gao, H. Lei, 2005, One-Pot Reaction to Synthesize Biocompatible Magnetite Nanoparticles, Adv. Mater. 17, 1001-1005.
  7. M. Kim, Y. Chen, Y. Liu, X. Peng, Super-Stable, 2005, High-Quality Fe3O4 Dendron–Nanocrystals Dispersible in Both Organic and Aqueous Solutions. Adv. Mater. 17, 1429-1432.
  8. H. Ai, C. Flask, B. Weinberg, X. Shuai, D. Pagel, D. Farrell, J. Duerk, J. Gao,  2005. Magnetite-Loaded Polymeric Micelles as Ultrasensitive Magnetic-Resonance Probes. Adv. Mater. 17, 1949-1952.
  9. G. Kurlyandskaya, D. Portnov, I. Beketov, A. Larrañaga, A. Safronov, I. Orue, A.     Medvedev, A. Chlenova, M. Sanchez-Ilarduya, A. Martinez-Amesti , A. Svalov, 2016 Nanostructured materials for magnetic biosensing. Biochimica et Biophysica Acta   (http://dx.doi.org/10.1016/j.bbagen.2016.12.003).
  10. A. Safronov, I. Beketov , I. Tyukova, A. Medvedev, O. Samatov, A. Murzakaev, 2015. Magnetic nanoparticles for biophysical applications synthesized by high-power physical dispersion.  Journal of Magnetism andMagneticMaterials. 383, 281–287.
  11. F. Owens, 2003, Ferromagnetic resonance of magnetic field oriented Fe3O4 nanoparticles in frozen ferrofluids. Journal of Physics and Chemistry of Solids. 64, 2289–2292.
  12. T. Malek, S. Chaki, J. Tailor  and M. Deshpande, 2016, Thermal Decomposition Study of Mn doped Fe3O4 Nanoparticles. AIP Conf. Proc. 1728, 020390-5 pages.
  13. J. Hastings and L. Corliss, 1956, Neutron Diffraction Study of Manganese Ferrite. Phys. Rev. 104, 328-331.
  14. M. Ishikawa, H. Tanaka, T. Kawai, 2006, Preparation of highly conductive Mn-doped Fe3O4 thin films with spin polarization at room temperature using a pulsed-laser deposition technique. Appl. Phys. Lett. 86, 222504-4 pages.
  15. D. Tripathy, O. Adeyeye, B. Boothroyd, N. 2007, Piramanayagam, Magnetic and transport properties of Co-doped Fe3O4 films. J.Appl. Phys. 101, 013904-7 pages.
  16. Z. Jing, S. Wu, 2006, Synthesis, characterization and gas sensing properties of undoped and Co-doped γ-Fe2O3-based gas sensors. Mater. Lett. 60, 952-956.
  17. G. Neri, A. Bonavita, C. Milone, S. Galvagno, 2003, Role of the Au oxidation state in the CO sensing mechanism of Au/iron oxide-based gas sensors. Sens. Actuators B. 93, 402-408.
  18. L. Jianjun, Y. Hongming, L. Guodong, L. Yanju, L. Jinsong, 2010, Cation distribution dependence of magnetic properties of sol–gel prepared MnFe2O4 spinel ferrite nanoparticles.  J.Magn. Magn. Mater. 322, 3396-3400.
  19. J. Amighian, M. Mozaffari, B. Nasr, 2006, Preparation of nano-sized manganese ferrite (MnFe2O4) via co-precipitation method. Phys. Status Solidi C. 3, 3188-3192.
  20. C. Liu, B. Zou, A. Rondinone, Z. Zhang, Counterion. 2000, Effect in Acid Synthesis of Mesoporous Silica Materials. J. Phys. Chem. B. 104, 7885-7894.
  21. G. Kurlyandskaya, S. Bhagat, S. Jacobo, J. Aphesteguy, N. Schegoleva, 2011, Microwave resonant and zero-field absorption study of pure and doped ferrite nanoparticles. Journal of Physics and Chemistry of Solids. 72, 276–285.
  22. E. Kima, H. Leea, B. Kwakb, B. Kimc, 2005, Synthesis of ferrofluid with magnetic nanoparticles bysonochemical method for MRI contrast agent. Journal of Magnetism and Magnetic Materials. 289, 328–330.
  23. D. Zhang, X. Zhang, X. Ni, J. Song, H. Zheng, 2006.  Low-temperature fabrication of MnFe2O4 octahedrons: Magnetic and electrochemical properties. Chem. Phys. Lett. 426, 120-123.
  24. S. Chaki, T. Malek, M. Chaudhary, J. Tailor, M.  Deshpande, 2015. Magnetite Fe3O4 nanoparticles synthesis by wet chemical reduction and their characterization. Adv. Nat. Sci: Nanosci. Nanotechnol. 6, 035009-6.
  25. S. Chaki, M. Deshpande, M. Chaudhary, K. Mahato, 2013. Synthesis and Characterization of Tin Monosulphide Nanoparticles. Adv. Sci. Eng. Med. 5, 285-290.
  26. M. Elango, K. Gopalakrishnan, S. Vairam, M. 2012. Thamilselcan, Strutural, optical and magnetic studies on non-acqueous synthesized Cd: Mn nanoparticle. J. Alloys Compd. 538, 48-55.
  27. Y. Vodyanitskii, E. Morgun, L. Obydenova, K. Rumyantseva, N. Chapygina,  2009. Geochemistry of Magnetite and Maghemite in Soils in European Russia. Geochem. Int. 47, 297-310.
  28. S. Rana, J. Philip, B. Raj,  2010.  Micelle based synthesis of cobalt ferrite nanoparticles and its characterization using Fourier Transform Infrared Transmission Spectrometry and Thermogravimetry.  Materials Chemistry and Physics. 124, 264-269.
  29. X. Liang, X. Wang, J. Zhuang, Y. Chen, D. Wang, Y. Li, 2006. Synthesis of Nearly Monodisperse Iron Oxide and Oxyhydroxide Nanocrystals. Advanced Functional Materials. 16, 1805-1813.
  30. L. Rebodos, J. Vikesland, 2010. Effects of Oxidation on the Magnetization of Nanoparticulate Magnetite. Langmuir. 26, 16745-16753.
  31. K. Kim, S.  Kim, Y. Choa, H. Kim, 2007. Formation and Surface Modification of Fe3O4 Nanoparticles by Co-precipitation and Sol-gel Method. J. Ind. Eng. Chem. 13, 1137-1141.
  32. E. McCafferty, 2010. Relationship between the isoelectric point (pHpzc) and the potential of zero charge (Epzc) for passive metals.  Electrochim. Acta. 55, 1630–1637.
  33. C. Caizer, V. Tura, 2006. Magnetic relaxation/stability of Co ferrite nanoparticles embedded in amorphous silica particles. J. Magn. Magn. Mater. 301, 513-520.
  34. C. Warner, W. Chouyyok, K. Mackie, D. Neiber, L. Saraf, T. Droubay, M. Warner, R. Addleman, 2012. Manganese doping of Magnetic Iron Oxide nanoparticles: Tailoring surface reactivity for a regenerable heavy metal sorbent. Langmiur. 28, 3931-3937.
  35. E. C. Stoner, E. P. Wohlfarth, 1948. A mechanism of magnetic hysteresis in heterogeneous alloys.  Phil. Trans. R. Soc. A. 240, 599-642.
  36. Christy R. Vestal, Z John Zhang, 2004. Magnetic spinel ferrite nanoparticles from microemulsions.  Int. J. Nanotechnology. 1, 240 – 263.