Hourly Air Temperature Modeling Based on Atmospheric Pressure, Global Solar Radiation and Relative Humidity Data

Document Type: Original Article


Laboratory of Mechanic, Faculty of Technology, University of Laghouat, Algeria


This paper is focusing on hourly air temperature estimation model (MAT) using available meteorological measured data located in Laghouat (Algeria). The hourly air temperature defined by the present model can be calculated at any time of the night or the day period based on atmospheric pressure, global solar radiation and relative humidity data. This work was compared with three published models from the literature as: Wave, Idliman and Double cosine. Fifteen months of hourly atmospheric pressure, global solar radiation, relative humidity and air temperature data collected during the period (January 2015 to March 2016) were used to test the accuracy of the various models studied. The analysis of the days selected randomly showed that the MAT model gave substantially good fit to the observed data. The RMSE of the MAT model is less than 0.5 oC during all the period of study than the other models studied ranged in the interval (2 oC, 4 oC). The estimated results are compared to the measured ones by using statistical parameters tests such as the mean bias error (MBE), the mean percentage error (MPE), the mean absolute error (MAE), the root mean square error (RMSE) and the coefficient of determination (R2).


  1. Bunker, A., J.Wildenhain, A.Vandenbergh,N.Henschke, J.Rocklöv, S. Hajat andR.Sauerborn,2016. Effects of Air Temperature on Climate-Sensitive Mortality and Morbidity Outcomes in the Elderly; ASystematic Review and Meta-Analysis of Epidemiological Evidence.EBioMedicine,6: 258-268.
  2. Deser, C., L.Terray andA.S.Phillips, 2016. Forced and Internal Components of Winter Air Temperature Trends Over North America During the Past 50 Years: Mechanisms and Implications.J. Clim., 29: 2237-2258.
  3. Bensahal, D. and A.Yousfi, 2018.The Effect of the Variation of Volume Flow Rate on the Thermal Parameters of a Solar Air Collector with a Single Pass of Air: Case Study for Laghouat, Algeria.International Journal of Engineering, Transaction A: Basics,31(1): 71-78.
  4. Goudarzi, K., S. K. Asadi Yousef-abad, E. Shojaeizadeh and A. Hajipour.2014.Experimental Investigation of Thermal Performance in an Advanced Solar Collector with Helical Tube.International Journal of Engineering (IJE) Transactions A: Basics, 27(7): 1149-1154.
  5. Dhass, A.D.,  E.Natarajan andP. Lakshmi. 2014. An Investigation of Temperature Effects on Solar Photovoltaic Cells and Modules.International Journal of Engineering (IJE), Transactions B: Applications, 27(11):1713-1722.
  6. Carson, J.E. 1963. Analysis of Oil and Air Temperature by Fourier Techniques.J.  Geophys.  Res., 68: 2217-2232.
  7. Allen, J.C.1976. A Modified Sine Wave Method for Calculating Degree Days.Environ. Entomol., 5(3):388-396.
  8. Myrup, L.O.1969. A Numerical Model of the Urban Heat Island.J. Appl. Meteorol, 8(6):908-918.
  9. Goudriaan, J. and P.E.Waggoner. 1972. Simulating Both Aerial Microclimate and Soil Temperature from Observations above the Foliar Canopy.Neth. J. Agric. Sci., 20: 104-124.
  10. Bilbao, J.A. and A.De Miguel. 2002. Air Temperature Model Evaluation in the North Mediterranean Belt Area. J. Applied Meteorology, 41(8):872-884
  11. Hollands, G.T., L.T.D’Andrea and I.D.Morrison. 1989. Effect of Random Fluctuations in Ambient Air Temperature on Solar System Performance. Sol. Energy, 42: 335-338.
  12. Boland, J. 1997. The Importance of the Stochastic Component of Climatic Variable in Simulating the Thermal Behavior of Domestic Dwellings.Sol. Energy, 60: 359-370.
  13. Knight, K.M., S.A.Klein and J.A.Duffie. 1991. A Methodology for the Synthesis of Hourly Weather Data. Sol. Energy, 46(2): 109-120.
  14. Erbs, D.G.1984. Models and Applications for Weather Statistics Related to Building Heating and Cooling Loads. Ph.D. thesis, Mechanical Engineering Dept., University of Wisconsin, Madison.
  15. Amato, U., V.Cuomo,F.Fontana and F.C. Serio. 1989. Statistical Predictability and Parametric Models of Daily Ambient Temperature and Solar Irradiance: An Analysis in the Italian Climate.J. App. Meteor., 28: 711-721.
  16. Hernandez, E.,R.Garcia and M.T.Teso. 1991. Minimum Temperature Forecasting by Stochastic Techniques: An Evidence of the Heat Island Effect. Mausam., 41: 161-166.
  17. Macchiato, M.,C.Serio,V.Lapenna and L.La Rotonda. 1993. Parametric Time Series Analysis of Cold and Hot Spells in Daily Temperature: An Application in Southern Italy. J. Appl. Meteor., 32: 1270-1281.
  18. Bakirci, K. 2009. Correlations  for  Estimation  of  Daily Global Solar Eradiation with Hours of Bright Sunshine in Turkey. Energy, 34(4): 485-501
  19. Fletcher, A.L. 2007. Estimating Daily Solar Radiation in New Zealand Using Air Temperatures. New Zealand Journal of Crop Horticultural Science, 35: 147-157.
  20. Raja, I.A. 1994. Insolation  Sunshine  Relation  with  Site Elevation and Latitude. Sol. Energy, 53(1): 53-56.
  21. Rietveld, M.R. 1978. A  New  Method  for  Estimating  the Regression  Coefficients  in  the  Formula  Relating  Solar Radiation  to  Sunshine. Agricultural Meteorology, 19(2-3): 243-252.
  22. Trabea, A.A. and M.A.M.Shaltout. 2000. Correlation of Global Solar Radiation with  Eteorological Parameters Over Egypt. Renewable Energy, 21(2): 297-308.
  23. Kumar, R. and L. Umanand. 2005.  Estimation  of  Global Radiation  Using  Clearness  Index  Model  for  Sizing Photovoltaic  System. Renewable  Energy, 30(15): 2221-2233.
  24. Ododo, J.C. 1997. Prediction of Solar Radiation Using Only Maximum Temperature, and Relative Humidity”, Energy Conversion and Management, 38(18): 1807-1814.
  25. De Wit, C.T.,  J.Goudriaan and H.H.Van Laar. 1978. Simulation, respiration and transpiration of crops. Pudoc, Wageningen, the Netherlands.
  26. Idliman, A. 1990. Theoretical Study of a Drying System Leather skins for the Marrakech Region, Consisting of an Agricultural Greenhouse Acting as a Hot Air Solar Generator and a Conventional dryer. Dissertation for the Master’s Degree. National School of Marrakech Morocco.
  27. Aguiar,R. 1996. Séries Sintèticas de Parâmetros Meteorològicos (Synthetic Series of Meteorological Parameters. Ph.D. thesis, Lisbon university, Lisbon, Portugal.
  28. Oliveiraa, A.P.,J. F.Escobedob,A. J.Machadoa and J.Soaresa. 2002.  Correlation Models of Diļ¬€use Solar Radiation Applied to the City of Sa˜o Paulo, Brazil. Applied Energy, 71: 59-73.
  29. Muzathik, A.M.,W.B.W.Nik,M.Z.Ibrahim,K.B.Samo,K.Sopian,M.A.Alghoul. 2011. Daily Global Solar Radiation Estimate Based on Sunshine Hours. Int. J. of Mechanical and Materials Engineering (IJMME), 6(1): 75-80.