Photocatalytic Degradation of Sulfamethoxazole in Visible Irradiation Using Nanosized NiTiO3 Perovskite


Department of Chemistry, Govt. P.G. College, Kota 324001, India


Nickel titanium oxide (NiTiO3) nanoparticles were synthesized at low temperature in non aqueous medium by modified Pechini method using ethylene glycol and citric acid as polymeric precursors. The structural and morphological characteristics of the products were studied by X-ray diffraction, fourier transform infrared spectroscopy (FT-IR), UV-Visible diffuse reflectance spectroscopy (UV-DRS), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDAX). XRD patterns of powder revealed crystalline rhombohedral NiTiO3 obtained at 700 o C and this crystalinity increased with temperature. SEM images estimated that the grain sizes of NiTiO3 to be in the range 10–250 nm. DRS spectra reveal two peaks, one at around 440-450 nm and another one at around 740-750 nm. The band gap energy was calculated using Tauc plot and it was found to be 1.67 eV. In this study, photocatalytic properties of NiTiO3 on sulfamethoxazole drug degradation was investigated which has not been reported elsewhere and results shows that it is a prominent material for photodegradation of drug in the range of visible light.


  1. Fatta-Kassinos, D., S. Meric, A. Nikolaou, 2011. Pharmaceutical residues in environmental waters and wastewater current state of knowledge and future research, Analitical and Bioanalytical Chemistry, 399 (1): 251-275.
  2. Hernando, M.D, M. Ezcua, A.R. Fernandez-Alba, D. Barcelo, 2006. Environmental risk assessment of pharmaceutical residues in wastewater effluents surface water and sediments. Talanta, 69(2): 334-342.
  3. Gros, M., M. Petrovic, A.G. Breda, D. Barcelo, 2010. Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environment International , 36(1):15-26.
  4. Lekshmi, M., P. Ammini, S. Kumar, M.F. Varela, 2017. The food production environment and the development of antimicrobial resistance in human pathogens of animal origin. Microorganisms, 5: 1-15.
  5. 5. Abellan, M.N, B. Bayarri, J. Gimenez, J. Costa, 2007. Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Applied Catalysis B- Environmental, 74: 233-241.
  6. Hirsch, R., T. Ternes, K. Haberer, K. L. Kratz, 1999. Occurrence of antibiotics in the aquatic environment. Science of the Total Environment, 225: 109-118.
  7. Larsson, D.G.J, C. Depedro, N. Paxeus, 2007. Effluent from drug manufactures contains extremely high level of pharmaceuticals. Journal of Hazardous Materials, 148:751-755.
  8. Klavarioti, M., D. Mantzavinos, D. Kassinos, 2009. Removal of residual pharmaceutical from aqueous system by advance oxidation process. Environment International, 35: 402-417.
  9. Almomani, F.A., M. Shawaqfan, R.R. Bhosale, A. Kumar, 2016. Removal of emerging pharmaceuticals from wastewater by ozone-based advanced oxidation processes. Environmental Progress & Sustainable Energy, 35: 982-995.
  10. Lester, Y., D. Avisar, I. Gozlan, H. Mamane, 2011. Removal of pharmecuticals using combination of UV/H2O2/O3 advance oxidation process. Water Science & Technology, 64: 2230-2238.
  11. Candido, J.P., S.J. Andrade, A.L. Fonseca, F.S Siva, M.R.A. Silva, M.M. Kondo, 2016. Ibuprofen removal by heterogeneous photocatalysis and ecotoxicological evaluation of the treated solution.  Environmental Science and Pollution Research, 23:19911-19920.
  12. Chatzitakis, A., C. Berberidou, I. Paspaltsis, G. Kyriakou, T. Sklaviadis, I. Poulios,  2008, Photocatalytic degradation and drug activity reduction of chloramphenicol. Water Research, 42: 386-394.
  13. Hu, A., X. Zhang, D. Luong, K.D. Oakes, M.R. Servos, R. Liang, S. Kurdi, P. Peng, Y. Zhou, 2009. Adsorption and photocatalytic degradation kinetics of pharmaceutical by TiO2 nanowires during water treatment.  Waste and Biomass Valorization, 1:1-9.
  14. Sarkar, S., R. Das, H. Choi, C. Bhattacharjee, 2014. Involvement of process parameter and various modes of application of TiO2 nanoparticles in heterogeneous photocatalysis of pharmaceutical water- A short review. Royal Society of Chemistry Advance, 100: 57250-57266.
  15. Giri, A.S., A.K.  Golder, 2014. Fenton, photo-fenton, H2O2 photolysis and TiO2 photocatalysis for dipyrone oxidation: Drug removal, mineralization, biodegradability and degradation mechanism. Industrial & Engineering Chemistry Research, 53: 1351-1358.
  16. Kim, S., S.J. Hwang, W. Choi, 2005. Visible light active platinum ion – doped TiO2 photocatalyst.  The Journal of Physical Chemistry B, 109 (51): 24260-24267.
  17. Kudo, A.K. Omori, H. Kato, 1999. A novel aqueous process for preparation of crystal form controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. Journal of American Chemical Society, 121: 11459-11467.
  18. Tang, J. W., D.F. Wang, Z.G. Zou, J.H. Ye, 2003. Modification of photophysical properties of WO3 by doping different metals.  Materials Science Forum, 423:163-166.
  19. Sharma, Y.K., M. Kharkwal, S. Uma, R. Nagarajan, 2009. Synthesis and characterization of titanates of the formula MTiO3 (M=Mn,Fe,Co,Ni and Cd) by co-precipitation of mixed metal oxalates.  Polyhedron, 28(3): 585-599.
  20. Shen, P., J.C. Lofaro, J. Woerner, W.R. White, M.G. Su, D. Oplov, 2013. A photocatalytic activity of hydrogen evolution over Rh doped SrTiO3 prepared by polymerizable complex method.  Chemical Engineering Journal, 223: 200-208.
  21. Qu, Y., W. Zhou, H. Fu, 2014. Porous cobalt titanate nanorod; A new candidate for visible light driven photocatalytic water oxidation. Chem Cat Chem, 6: 265-270.
  22. Qu, Y; W. Zhou, Z. Ren, S. Du, X. Meng, G. Tian, K. Pan, G. Wang, H. Fu,  2012. Facile preparation of porous NiTiO3 nanorods with enhanced visible-light driven photocatalytic performance.  Journal of Materials Chemistry, 22: 16471-16476.
  23. Yung, D., A. Zikin, I. Hussainova, H. Danninger, E. Badisch, A. Gavrilovic,  2017. Tribological performance of ZrC-Ni and TiC-Ni cerment reinforced PTA hardfacing at elevated temperature.  Surface & Coating Technology, 309, 497-505.
  24. Della, E.D. Gaspora, A. Martucci, 2015. Sol-Gel thin film for plasmonic gas sensors. Sensors, 15: 16910-16928.
  25. Lakshmi, M., A.S. Roy, S. Khasim, M. Faisal, K.C. Sajjan, 2013, Dielectric property of NiTiO3 doped substituted ortho-chloropolyaniline composite. AIP Advan.3, 112: 1- 14.
  26. Anandan, S., T.L. Villarreal, J. J. Wu, 2015. Sonochemical synthesis of mesoporous NiTiO3 ilmenite nanorods for catalytic degradation of tergitol in water. Industrial & Engineering Chemistry Research, 54(11): 2983-2990.
  27. Jing, P., W. Lan, Q. Su, M. Yu, E. Xie, 2014. Visible-light photocatalytic activity of novel NiTiO3 nanowires with rosary like shape. Science of Advanced Materials, 6: 1-7.
  28. Lopes, K.P., L.S, Cavalcante, A.Z, Simoes, J.A. Varda, E. Longo,  E.R. Leite, 2009. NiTiO3 powder obtained by polymeric precursor method: Synthesis and Characterization.  Journal of Alloy and Compound, 468: 327-332.
  29. Lin, Y.J., Y.H. Chang, W.D. Yang, B.S. Tsai, 2006. Synthesis and characterization of ilmenite NiTiO3 and CoTiO3 prepared by a modified pechini method. Journal of non Crystaline  Solids, 352: 789-794.
  30. Moghlada, A., A.S. Unianfar, R. Ashiri, 2015. Facile synthesis of NiTiO3 yellow nanopigments with enhanced solar radiation reflection by an innovative one step method at low temperature. Dyes and Pigments, 123: 92-99.
  31. Visser, H., C.E, Dude, W.H, Armstrong, K. Sauer, V. K.  Yachandra, 2002. FTIR spectra and normal-mode analysis of a tetranuclear manganese adamantine like complex in two electrochemical prepared oxidation state; Relevance to the oxygen evolving complex of photosystem II.  Journal of the American Chemical Society, 124: 11008-11017.
  32. Anjana, P.S., M.Th. Sebastian, 2006. Synthesis  Characterization and microwave dielectric properties of ATiO3 (A= Co,Mn,Ni) ceramics. Journal of American Ceramic Society, 89: 2114-2117.
  33. Vijayalalakashimi, R., V. Rajendran, 2012. Effect of reaction temperature on size and optical properties of NiTiO3 nanoparticles.  Eouropean Journal of Chemistry, 9: 282-288.
  34. Yuvaraj, S., V.D. Nithya, F.K. Sqiadali, C. Sanjeeviraja, G.S Kalai, S. Arumugam, 2013. Investigation on the temperature dependent electrical and magnetic properties of NiTiO3 by molten salt synthesis.  Materials Research Bulletin, 48: 110-116.
  35. Lopez, R., R. Gomez, 2012. Band-gap energy estimation from diffuse reflectance measurement on sol-gel commercial TiO2: a comparative study. Journal of sol-gel Science and  Technology, 61: 1-7.
  36. Pugazhenthiran, N., K. Kaviyarasan, T. Sivasankar, A. Emeline, D. Bahnemann, R.V. Mangalaraja,  S. Anandan,  2017. Sonolchemical synthesis of porous NiTiO3 nanorods for photocatalytic degradation of ceftiofur sodium. Ultrasonic Sonochemistry, 35: 342-350:
  37. Zhang, J., Y. Nosaka, 2014. Mechanism of the OH radical generation in photocatalysis with TiO2 of different crystalline types. The Journal of Physical Chemistry, 118: 10824-10832.
  38. Zonoyz, P.R., A. Niaei,  A. Tarjomannejed,  2016.  Kinetic modelling of CO oxidation over La1-xAxMn0.6Cu0.4O3 (A=Sr and Ce) nanoperovskie type mixed oxides. International Journal of Environmental Science and Technology, 13: 1665-1674.