Authors

1 Chemistry Division, School of Advanced Sciences, VIT University, India-600 127+Department of Medicinal Chemistry, GVK Biosciences Pvt. Ltd, India-500 076

2 Department of Medicinal Chemistry, GVK Biosciences Pvt. Ltd, India-500 076

3 Chemistry Division, School of Advanced Sciences, VIT University, India-600 127

Abstract

Nanoporous heterogeneous AlSBA-15 (x) type aluminosilicate catalyst with different nSi/nAl ratios (x = 41, 129, and 210) was synthesized using hydrothermal method. AlSBA-15 catalysts were characterized by XRD, N2 sorption, TPD-NH3, FT-IR, SEM and TEM. XRD analyses of AlSBA-15 catalysts confirmed the presence of well-ordered crystalline structure with p6mm symmetry. N2 isotherm of AlSBA-15 catalyst materials showed a type IV adsorption isotherm with H1 hysteresis loops. The specific surface area and specific pore volume of the AlSBA-15 catalysts are in the rage from 480 to 757 m2/g and from 0.65 to 0.95 cm3/g, respectively. SEM analysis of AlSBA-15 (41) revealed a worm-like particle morphology comprising particles in a size range of 3 μm with the co-existence of smaller particles of ca. 1 μm size. A distinct approach adopted for the synthesis of α-aminonitriles using heterogeneous nanoporous AlSBA-15 catalyst via Strecker reaction. This one-pot, three component system of amines (primary/secondary), carbonyl compounds (aldehydes/ketone) and TMSCN compounds proceed excellently in the presence of AlSBA-15 catalyst in water medium at room temperature (RT). The major advantages are excellent yield, short reaction time, high chemo-selectivity, simple experimental procedure, recyclability of the catalyst, easy work up procedure. This one-pot synthesis consists of two consecutive steps: (1) imine formation from amine and aldehyde/ketone and (2) cyano addition to imine. The findings suggest that catalyst is recyclable and can be reused up to six cycles.

Keywords

  1. Chaturvedi, D., A.K. Chaturvedi, P.K. Dwivedi and N. Mishra, 2013. A Novel Approach to the Synthesis of α-Aminonitriles Using Triphenyl-phosphine Dibromide under Solvent-Free Conditions. Synlett, 24(01): 33-36.
  2. Shafran, Y.M., V.A. Bakulev and V.S. Mokrushin, 1989. Synthesis and properties of α-aminonitriles. Russian Chemical Reviews, 58(2): 148-162.
  3. Enders, D., and J.P. Shilvock, 2000. Some recent applications of α-amino nitrile chemistry. Chemical Society Reviews, 29(5): 359-373.
  4. Matier, W.L., D.A. Owens, W.T. Comer, D. Deitchman, H.C. Ferguson, R.J. Seidehamel and J.R. Young, 1973. Antihypertensive agents. Synthesis and biological properties of 2-amino-4-aryl-2-imidazolines. Journal of medicinal chemistry, 16(8): 901-908.
  5. Dyker, G., 1997. Amino acid derivatives by multicomponent reactions. Angewandte Chemie International Edition, 36(16): 1700-1702.
  6. Weinstock, L.M., P. Davis, B. Handelsman and R.J. Tull, 1967. General synthetic system for 1, 2, 5-thiadiazoles. The Journal of Organic Chemistry, 32(9): 2823-2829.
  7. Duthaler, R.O., 1994. Recent developments in the stereoselective synthesis of α-aminoacids. Tetrahedron, 50(6): 1539-1650.
  8. Nakamura, S., N. Sato, M. Sugimoto and T. Toru, 2004. A new approach to enantioselective cyanation of imines with Et2AlCN. Tetrahedron: Asymmetry, 15(9): 1513-1516.
  9. Harusawa, S., Y. Hamada, and T. Shioiri, 1979. Diethyl phosphorocyanidated (DEPC). A novel reagent for the classical Strecker's α-amino nitrile synthesis. Tetrahedron Letters, 20(48): 4663-4666.
  10.  Abell, J.P. and H. Yamamoto, 2009. Dual-activation asymmetric Strecker reaction of aldimines and ketimines catalyzed by a tethered bis (8-quinolinolato) aluminium complex. Journal of the American Chemical Society, 131(42): 15118-15119.
  11. Sipos, S. and I. Jablonkai, 2009. One-pot synthesis of α-aminonitriles from alkyl and aryl cyanides: a Strecker reaction via aldimine alanes. Tetrahedron Letters, 50(16): 1844-1846.
  12. Li, Z., Y. Ma, J. Xu, J. Shi and H. Cai, 2010. One-pot three-component synthesis of α-aminonitriles using potassium hexacyanoferrate (II) as an eco-friendly cyanide source. Tetrahedron Letters, 51(30): 3922-3926.
  13. Enders, D. and J.P. Shilvock, 2000. Some recent applications of α-amino nitrile chemistry. Chemical Society Reviews, 29(5): 359-373.
  14. Vongvilai, P. and O. Ramstrom, 2009. Dynamic asymmetric multicomponent resolution: lipase-mediated amidation of a double dynamic covalent system. Journal of the American Chemical Society, 131(40): 14419-14425.
  15. Banphavichit, V., W. Mansawat, W. Bhanthumnavin and T. Vilaivan, 2004. A highly enantioselective Strecker reaction catalyzed by titanium-N-salicyl-β-aminoalcohol complexes. Tetrahedron, 60(46): 10559-10568.
  16. Prasad, B.B., A. Bisai and V.K. Singh, 2004. Trimethylsilyl cyanide addition to aldimines and its application in the synthesis of (S)-phenylglycine methyl ester. Tetrahedron letters, 45(52): 9565-9567.
  17. Evans, D.A., G.L. Carroll and L.K. Truesdale, 1974. Synthetic applications of trimethylsilyl cyanide. Efficient synthesis of beta-aminomethyl alcohols. The Journal of Organic Chemistry, 39(7): 914-917.
  18. Evans, D.A., L.K. Truesdale and G.L. Carroll, 1973. Cyanosilylation of aldehydes and ketones. A convenient route to cyanohydrin derivatives. Journal of the Chemical Society, Chemical Communications, (2): 55-56.
  19. Kobayashi, S., H. Ishitani and M. Ueno, 1997. Facile synthesis of α-amino nitriles using lanthanide triflate as a Lewis acid catalyst. Synlett, 1(01): 115-116.
  20. Paraskar, A.S. and A. Sudalai, 2006. Cu(OTf)2 or Et3N-catalyzed three-component condensation of aldehydes, amines and cyanides: a high yielding synthesis of α-aminonitriles. Tetrahedron letters, 47(32): 5759-5762.
  21. De, S.K. and R.A. Gibbs, 2004. Bismuth trichloride catalyzed synthesis of α-aminonitriles. Tetrahedron letters, 45(40): 7407-7408.
  22. De, S.K., 2005. RuCl3 Catalyzed One‐Pot Synthesis of α‐Aminonitriles. Synthetic communications, 35(5): 653-656.
  23. Kobayashi, S. and T. Busujima, 1998. Scandium triflate-catalyzed Strecker-type reactions of aldehydes, amines and tributyltin cyanide in both organic and aqueous solutions. Achievement of complete recovery of the tin compounds toward environmentally-friendly chemical processes. Chemical Communications, (9): 981-982.
  24. Karmakar, B. and J. Banerji, 2010. K2PdCl4 catalyzed efficient multicomponent synthesis of α-aminonitriles in aqueous media. Tetrahedron Letters, 51(20): 2748-2750.
  25. Narasimhulu, M., T.S. Reddy, K.C. Mahesh, S.M. Reddy, A.V. Reddy and Y. Venkateswarlu, 2007. Lanthanum (III) nitrate hexahydrate or gadolinium (III) chloride hexahydrate catalyzed one-pot synthesis of α-amino nitriles. Journal of Molecular Catalysis A: Chemical, 264(1): 288-292.
  26. Shen, Z.L., S.J. Ji, and T.P. Loh, 2008. Indium (III) iodide-mediated Strecker reaction in water: an efficient and environmentally friendly approach for the synthesis of α-aminonitrile via a three-component condensation. Tetrahedron, 64(35): 8159-8163.
  27. Pasha, M.A., H.M. Nanjundaswamy and V.P. Jayashankara, 2007. Cerium (III) Chloride: A Highly Efficient Reagent for the Synthesis of α‐Aminonitriles. Synthetic Communications, 37(24): 4371-4380.
  28. Raghu, M. and C. Sanjeeva Reddy, 2009. ZrCl4 promoted efficient one-pot synthesis of α-amino nitriles. Indian journal of chemistry. Sect. B: Organic chemistry, including medical chemistry, 48(2): 295-300.
  29. Li, Z., Y. Ma, J. Xu, J. Shi, and H. Cai, 2010. One-pot three-component synthesis of α-aminonitriles using potassium hexacyanoferrate (II) as an eco-friendly cyanide source. Tetrahedron Letters, 51(30): 3922-3926.
  30. Reddy, C. S. and M. Raghu, 2008. p-Toluenesulfonic acid catalyzed rapid and efficient protocol for one-pot synthesis of α-amino nitriles. Indian Journal Chemistry, 47B: 1572-1577.
  31. Thielemann, J.P., F. Girgsdies, R. Schlögl and C. Hess 2011. Pore structure and surface area of silica SBA-15: influence of washing and scale-up. Beilstein journal of nanotechnology, 2: 110-118.
  32. Chandrasekar, G., M. Hartmann and V. Murugesan, 2014. Immobilization of cytochrome c on the cylindrical mesoporous silica extrudates. Journal of nanoscience and nanotechnology, 14(3): 2606-2613.
  33. Melde, B.J., B.J. Johnson and P.T. Charles, 2008. Mesoporous silicate materials in sensing. Sensors, 8(8): 5202-5228.
  34. Bagherzade, G. and S. Aryanejad, 2016. Green One-pot Synthesis of α–aminonitriles by Nanocrystalline CeO2 as Heterogeneous Environmental Friendly Catalyst. Current Catalysis, 5(3): 220-227.
  35. Shekouhy, M., A. Moaddeli and A. Khalafi-Nezhad, 2016. Magnetic Fe3O4–BF3: highly efficient Lewis acid catalyst for the synthesis of α-aminonitriles. Research on Chemical Intermediates, 42(4): 3805-3827.
  36. Mansoor, S.S., K. Aswin, K. Logaiya and S.P.N. Sudhan, 2016. ZrOCl2·8H2O: an efficient and recyclable catalyst for the three-component synthesis of amidoalkyl naphthols under solvent-free conditions. Journal of Saudi Chemical Society, 20(2): 138-150.
  37. Maleki, A., R.F. Haji, M. Ghassemi and H. Ghafuri, 2017. Preparation and application of a magnetic organic-inorganic hybrid nanocatalyst for the synthesis of α-aminonitriles. Journal of Chemical Sciences, 129(4): 457-462.
  38. Prakash, G.S., T.E. Thomas, I. Bychinskaya, A.G. Prakash, C. Panja, H. Vaghoo and G.A. Olah, 2008. Efficient green synthesis of α-aminonitriles, precursors of α-amino acids. Green Chemistry, 10(10): 1105-1110.
  39. Gharib, A., N.N. Pesyan, L.V. Fard, and M. Roshani, 2014. ZnO Nanoparticle as Catalyst for Efficient Green Synthesis of Antiplatelet Drug (Clopidogrel). Journal of chemical engineering and chemistry research, 1(1): 1-5.
  40. Rafiee, E., A. Azad and M. Joshaghani, 2007. K5CoW12O40. 3H2O: Highly Efficient Heterogeneous Catalyst for the Synthesis of α-Aminonitriles. Letters in Organic Chemistry, 4(1): 60-63.
  41. Rafiee, E., S. Rashidzadeh, S. Eavani and M. Joshaghani, 2010. KSF-supported heteropoly acids catalyzed one-pot synthesis of α-aminonitriles. Bulletin of the Chemical Society of Ethiopia, 24(2): 209-215.
  42. Rafiee, E., S. Rashidzadeh, M. Joshaghani, H. Chalabeh and K. Afza, 2008. γ-Al2O3-Supported 12-Tungstosilicic Acid as an Efficient Heterogeneous Catalyst for the Synthesis of α-Aminonitrile. Synthetic Communications, 38(16): 2741-2747.
  43. Herrerias, C.I., X. Yao, Z. Li and C.J. Li, 2007. Reactions of C− H Bonds in Water. Chemical reviews, 107(6): 2546-2562.
  44. Babu, G. and P.T. Perumal, 2000. Synthetic applications of indium trichloride catalyzed reactions. ChemInform, 31(47).
  45. T. P. Loh, 2004. Science of Synthesis, (Ed. H. Yamamoto), Georg Thieme: Stuttgart, New York, USA, 413.
  46. Galletti, P., M. Pori and D. Giacomini, 2011. Catalyst‐Free Strecker Reaction in Water: A Simple and Efficient Protocol using Acetone Cyanohydrin as Cyanide Source. European Journal of Organic Chemistry, 2011(20): 3896-3903.
  47. Shen, Z.L., S.J. Ji, and T.P. Loh, 2008. Indium (III) iodide-mediated Strecker reaction in water: an efficient and environmentally friendly approach for the synthesis of α-aminonitrile via a three-component condensation. Tetrahedron, 64(35): 8159-8163.
  48. Das, B., G. Satyalakshmi and K. Suneel, 2009. Convenient and rapid synthesis of α-aminonitriles starting directly from nitro compounds in water. Tetrahedron Letters, 50(23): 2770-2773.
  49. Surendra, K., N.S. Krishnaveni, A. Mahesh and K.R. Rao, 2006. Supramolecular catalysis of Strecker reaction in water under neutral conditions in the presence of β-cyclodextrin. The Journal of organic chemistry, 71(6): 2532-2534.
  50. Vinu, A., G.S. Kumar, K. Ariga and V. Murugesan, 2005. Preparation of highly ordered mesoporous AlSBA-15 and its application to isopropylation of m-cresol. Journal of Molecular Catalysis A: Chemical, 235(1): 57-66.
  51. Kim, N.Y., J.S. Jung, J.S. Lee, E.H. Yang, G.H. Hong, S.S. Lim, and D.J. Moon, 2016. Synthesis and characterization of Al-modified SBA-15 for Fischer–Tropsch synthesis (FTS) reaction. Research on Chemical Intermediates, 42(1): 319-334.
  52. M. Gómez-Cazalilla, J.M. Mérida-Robles, A. Gurbani, E. Rodríguez-Castellón and A. Jiménez-López, 2007. Characterization and acidic properties of Al-SBA-15 materials prepared by post-synthesis alumination of a low-cost ordered mesoporous silica. Journal of Solid State Chemistry, 180(3): 1130-1140.
  53. Chandrasekar, G., M. Hartmann and V. Murugesan, 2014. Immobilization of cytochrome c on the cylindrical mesoporous silica extrudates. Journal of nanoscience and nanotechnology, 14(3): 2606-2613.
  54. Kumaran, G.M., S. Garg, K. Soni, M. Kumar, J.K. Gupta, L.D. Sharma, and G.M. Dhar, 2008. Synthesis and characterization of acidic properties of Al-SBA-15 materials with varying Si/Al ratios. Microporous and Mesoporous Materials, 114(1): 103-109.
  55. Koekkoek, A. J., J.R. Van Veen, P.B. Gerrtisen, P. Giltay, P.C. Magusin and E.J. Hensen, 2012. Brønsted acidity of Al/SBA-15. Microporous and Mesoporous Materials, 151: 34-43.
  56. Pourmousavi, S.A. and H. Salahshornia, 2011. Efficient, Rapid and Solvent-free Cyanosilylation of Aldehydes and Ketones Catalyzed by SbCl3. Bulletin of the Korean Chemical Society, 32(5): 1575-1578.
  57. Estevez, V., V. Sridharan, S. Sabate, M. Villacampa and J.C. Menéndez, 2016. Three‐Component Synthesis of Pyrrole‐Related Nitrogen Heterocycles by a Hantzsch‐Type Process: Comparison between Conventional and High‐Speed Vibration Milling Conditions. Asian Journal of Organic Chemistry, 5(5): 652-662.
  58. Subhani, M.A., K.S. Müller, F. Koç and P. Eilbracht, 2009. A new one-pot hydroformylation/Strecker synthesis as a versatile synthetic tool for polyfunctional compounds and functionalization of dendrimers. Organic & biomolecular chemistry, 7(19): 4000-4008.
  59. Reddy, B.M., B. Thirupathi and M.K. Patil, 2009. Highly efficient promoted zirconia solid acid catalysts for synthesis of α-aminonitriles using trimethylsilyl cyanide. Journal of Molecular Catalysis A: Chemical, 307(1): 154-159.
  60. Karimi, B. and D. Zareyee, 2009. Solvent-free three component Strecker reaction of ketones using highly recyclable and hydrophobic sulfonic acid based nanoreactors. Journal of Materials Chemistry, 19(45): 8665-8670.
  61. Rajabi, F., S. Nourian, S. Ghiassian, A.M. Balu, M.R. Saidi J.C. Serrano-Ruiz and R. Luque, 2011. Heterogeneously catalysed Strecker-type reactions using supported Co (II) catalysts: Microwave vs. conventional heating. Green Chemistry, 13(11): 3282-3289.
  62. Saidi, M.R. and N. Azizi, 2004. A novel and efficient method for the synthesis of α-aminonitriles by the reaction of aminals with trimethylsilyl cyanide catalyzed by iodine. Journal of the Iranian Chemical Society, 1(2): 136-140.
  63. Reddy, S.S., B.R.P. Reddy and P.V.G. Reddy, 2015. Propylphosphonic anhydride (T3P®) catalyzed one-pot synthesis of α-aminonitriles. Chinese Chemical Letters, 26(6): 739-743.