Zhang, Z., Hou, Z., Yang, C. Ma, Tao, F. Tao, F. and Xu, P. 2011. Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8”, Bioresour. Technol., 102,: 4111–4116.
Gopinathan, R., Prakash, M. and Bharathirajan, R., 2012. An experimental study for crude oil biodegradation in contaminated soil. Int. J. Curr. Microbiol. Appl. Sci. 1(1); 12-16.
Frick C. M., Farrell R. E. and Germida J.J. 1999. Assessment of Phytoremediation as an in situ technique for cleaning oil-contaminated sites. Petroleum Technology Alliance Canada, Calgary. Retrieved from: http://www.rtdf.org/pub/phyto/phylinks.htm [Accessed on 5th July 2016].
Lundstedt S (2003). Analysis of PAHs and their transformation products in contaminated soil and remedial processes. Solfjodern Offset AB, Umea, Sweden, 55pp
Yadav R., Arora P., Kumar S., and Chaudhury A. (2010). Perspectives for genetic engineering of poplars for enhanced phytoremediation abilities. Ecotoxicology 19: 1574–1588.
Lambrechts T., Gustot Q., Couder E., Houben D., Iserentant A., and Lutts S. (2011). Comparison of EDTA-enhanced phytoextraction and phytostabilisation strategies with Lolium perenne on a heavy metal contaminated soil. Chemosphere 85: 1290–1298.
Pandey V. C. 2012. Phytoremediation of heavy metals from fly ash pond by Azolla caroliniana. Ecotoxicology and Environmental Safety 82: 8–12.
Zhang X., Lin L., Chen M, Zhu Z., Yang W., Chen B., Yang X., and An Q. 2012. A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance. Journal of Hazardous Material 229–230: 361– 370.
Sinha S., Mishra R. K., Sinam G., Mallick S., and Gupta A. K. 2013. Comparative evaluation of metal phytoremediation potential of trees, grasses, and flowering plants from tannery-wastewater-contaminated soil in relation with physicochemical properties. Soil Sediment Contamination 22: 958–983.
Cai B., Ma J., Yan G., Dai X., Li M., and Guo S. 2016. Comparison of phytoremediation, bioaugmentation and natural attenuation for remediating saline soil contaminated by heavy crude oil. Biochemical Engineering Journal 112:170-177.
Ferro, A. M., Rock, S.A., Kennedy, J.J. Herrick, & Turner, D.L. 1999. Phytoremediation of soils contaminated with wood preservatives: greenhouse and field evaluations. International Journal of Phytochemistry, 1: 289-306.
Euliss, K., Chi-hua, H., Schwab, A. P., Steve, R., Banks, M. K. 2008. Greenhouse and field assessment of phytoremediation for petroleum contaminants in a riparian zon. Bioresource Technology, 99: 1961-1971.
Garbisu, C., Hernandez-Allica, J., Barrutia, O., Alkorta, I. and Becerril, J.M. 2002. Phytoremediation: A technology using green plants to remove contaminants from polluted areas, Rev. Environ. Health. 17: 75–90.
Kathi, S. and A.B. Khan. 2011. Phytoremediation approaches to PAH contaminated soil. Indian J. Sci. Technol., 4: 56-63.
Keenan, J.J., S.H. Gaffney, D.A. Galbraith, P. Beatty and D.J. Paustenbach, 2010. Gasoline: A complex chemical mixture, or a dangerous vehicle for benzene exposure? Chem. Biol. Interact., 184: 293-295.
Sanusi, S.N.A., S.R.S. Abdullah and M. Idris, 2012. Preliminary test of phytoremediation of hydrocarbon contaminated soil using Paspalum vaginatum sw. Aust. J. Basic Applied Sci., 6: 39-42.
Erute, M.O., Z. Mary, O. Gloria, 2009. The effect of crude oil on growth of the weed (Paspalum scrobiculatum L.)-phytoremediation potential of the plant. African Journal of Environmental Science and Technology, 3(9): 229-233.
Cohen, M.F., J. Williams and H. Yamasaki, 2002. Biodegradation of diesel fuel by an Azolla-derived bacterial consortium. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 37: 1593-1606.
Purwanti, I.F., M. Mukhlisin, S.R.S. Abdullah, H. Basri, M. Idris, A. Hamzah and M.T. Latif, 2012. Range finding test of hydrocarbon on Scirpus mucronatus as preliminary test for phytotoxicity of contaminated soil. Revelation Sci., 2: 61-65.