Optimization and Production of Botryococcus braunii Biomass Using Commercial Nutrients by Response Surface Methodology

Authors

1 Centre for Advanced Studies in Botany, University of Madras, Chennai, TN, India

2 Department of Polymer Technology, B.S. Abdur Rahman Crescent University, Vandalur, Chennai, TN, India

3 Department of Botany, Ayya Nadar Janaki Ammal College, Sivakasi, TN, India

Abstract

Biofuel production by a sustainable method using microalgae is entirely dependent on biomass production. However, commercialization at large scale using microalgae is a major obstacle using analytical grade growth nutrients, due to their cost effectiveness. Hence, development of a cost effective method is essential to reduce the production cost. Therefore, the present study envisaged the effect of low-cost commercial fertilizers such as urea, sodium bicarbonate, magnesium sulfate, potash and di-ammonium phosphate as growth nutrients for the production of biomass and total lipid of Botryococcus braunii were made. The biomass and total lipid production were optimized using Response Surface Methodology by 25 Central Composite Design. The result showed 225 mg L-1 of urea, 650 mg L-1 of sodium bicarbonate, 225 mg L-1 of magnesium sulfate, 150 mg L-1 of potash and 15 mg L-1 of di-ammonium phosphate supported the algal growth with a maximum biomass and total lipid of 0.792 gL-1 dry wt.. and 260 mg L-1 dry wt.., respectively. The biomass productivity of alga B. brauniiat the above condition recorded as 0.04 gL-1 day-1 with a generation time of 1.90 days.

Keywords


1.     Birol, F., 2008. World energy outlook. Paris: International Energy Agency.

2.     Khan, S.A., M.Z. Hussain, S. Prasad and U. Banerjee, 2009. Prospects of biodiesel production from microalgae in India. Renewable and Sustainable Energy Reviews, 13(9): 2361-2372.

3.     Sheehan, J., T. Dunahay, J. Benemann and P. Roessler, 1998. A look back at the US Department of Energy’s aquatic species program: biodiesel from algae. National Renewable Energy Laboratory, 328.

4.     Wang, G., K. Chen, L. Chen, C. Hu, D. Zhang and Y. Liu, 2008. The involvement of the antioxidant system in protection of desert cyanobacterium Nostoc sp. against UV-B radiation and the effects of exogenous antioxidants. Ecotoxicology and environmental safety, 69(1): 150-157.

5.     Gouveia, L. and A.C. Oliveira, 2009. Microalgae as a raw material for biofuels production. Journal of industrial microbiology & biotechnology, 36(2): 269-274.

6.     Kalacheva, G.S., N.O. Zhila and T.G. Volova, 2002. Lipid and hydrocarbon compositions of a collection strain and a wild sample of the green microalga Botryococcus. Aquatic Ecology, 36(2): 317-331.

7.     Metzger, P. and C. Largeau, 2005. Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Applied microbiology and biotechnology, 66(5): 486-496.

8.     Bajpai, P., P. Bajpai and O. Ward, 1991. Optimization of production of docosahexaenoic acid (DHA) byThraustochytrium aureum ATCC 34304. Journal of the American Oil Chemists’ Society, 68(7): 509-514.

9.     Oliveira, R., M.F. Almeida, L. Santos and L.M. Madeira, 2006. Experimental design of 2, 4-dichlorophenol oxidation by Fenton's reaction. Industrial & engineering chemistry research, 45(4): 1266-1276.

10.   Yamaguchi, K., H. Nakano, M. Murakami, S. Konosu, O. Nakayama, M. Kanda, A. Nakamura and H. Iwamoto, 1987. Lipid composition of a green alga, Botryococcus braunii. Agricultural and biological chemistry, 51(2): 493-498.

11.   Frenz, J., C. Largeau and E. Casadevall, 1989. Hydrocarbon recovery by extraction with a biocompatible solvent from free and immobilized cultures of Botryococcus braunii. Enzyme and microbial technology, 11(11): 717-724.

12.   Folch, J., M. Lees and G. Sloane-Stanley, 1957. A simple method for the isolation and purification of total lipids from animal tissues. J biol Chem, 226(1): 497-509.

13.   Kulkarni, M.G. and A.K. Dalai, 2006. Waste cooking oil an economical source for biodiesel: a review. Industrial & engineering chemistry research, 45(9): 2901-2913.

14.   Chisti, Y., 2007. Biodiesel from microalgae. Biotechnology advances, 25(3): 294-306.

15.   Mata, T.M., A.A. Martins and N.S. Caetano, 2010. Microalgae for biodiesel production and other applications: a review. Renewable and sustainable energy reviews, 14(1): 217-232.

16.   Richmond, A., 1986. Outdoor mass cultures of microalgae. Handbook of microalgal mass culture: 285-330.

17.   Mandalam, R.K. and B.Ø. Palsson, 1998. Elemental balancing of biomass and medium composition enhances growth capacity in high-density Chlorella vulgaris cultures.

18.   Azma, M., M.S. Mohamed, R. Mohamad, R.A. Rahim and A.B. Ariff, 2011. Improvement of medium composition for heterotrophic cultivation of green microalgae, Tetraselmis suecica, using response surface methodology. Biochemical Engineering Journal, 53(2): 187-195.

19.   Bajaj, I.B., S.S. Lele and R. Singhal, 2009. A statistical approach to optimization of fermentative production of poly (γ-glutamic acid) from Bacillus licheniformis NCIM 2324. Bioresource technology, 100(2): 826-832.

20.   Ren, J., M. Zhao, J. Shi, J. Wang, Y. Jiang, C. Cui, Y. Kakuda and S.J. Xue, 2008. Optimization of antioxidant peptide production from grass carp sarcoplasmic protein using response surface methodology. LWT-Food Science and Technology, 41(9): 1624-1632.

21.   Lam, M.K. and K.T. Lee, 2013. Effect of carbon source towards the growth of Chlorella vulgaris for CO 2 bio-mitigation and biodiesel production. International Journal of Greenhouse Gas Control, 14: 169-176.

22.   Li, Y., M. Horsman, B. Wang, N. Wu and C.Q. Lan, 2008. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied microbiology and biotechnology, 81(4): 629-636.

23.   Welter, C., J. Schwenk, B. Kanani, J. Van Blargan and J.M. Belovich, 2013. Minimal medium for optimal growth and lipid production of the microalgae Scenedesmus dimorphus. Environmental Progress & Sustainable Energy, 32(4): 937-945.

24.   Mandal, S. and N. Mallick, 2009. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied microbiology and biotechnology, 84(2): 281-291.

25.   Hu, R., Food product design: a computer-aided statistical approach1999: CRC Press.

1.     Birol, F., 2008. World energy outlook. Paris: International Energy Agency.

2.     Khan, S.A., M.Z. Hussain, S. Prasad and U. Banerjee, 2009. Prospects of biodiesel production from microalgae in India. Renewable and Sustainable Energy Reviews, 13(9): 2361-2372.

3.     Sheehan, J., T. Dunahay, J. Benemann and P. Roessler, 1998. A look back at the US Department of Energy’s aquatic species program: biodiesel from algae. National Renewable Energy Laboratory, 328.

4.     Wang, G., K. Chen, L. Chen, C. Hu, D. Zhang and Y. Liu, 2008. The involvement of the antioxidant system in protection of desert cyanobacterium Nostoc sp. against UV-B radiation and the effects of exogenous antioxidants. Ecotoxicology and environmental safety, 69(1): 150-157.

5.     Gouveia, L. and A.C. Oliveira, 2009. Microalgae as a raw material for biofuels production. Journal of industrial microbiology & biotechnology, 36(2): 269-274.

6.     Kalacheva, G.S., N.O. Zhila and T.G. Volova, 2002. Lipid and hydrocarbon compositions of a collection strain and a wild sample of the green microalga Botryococcus. Aquatic Ecology, 36(2): 317-331.

7.     Metzger, P. and C. Largeau, 2005. Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Applied microbiology and biotechnology, 66(5): 486-496.

8.     Bajpai, P., P. Bajpai and O. Ward, 1991. Optimization of production of docosahexaenoic acid (DHA) byThraustochytrium aureum ATCC 34304. Journal of the American Oil Chemists’ Society, 68(7): 509-514.

9.     Oliveira, R., M.F. Almeida, L. Santos and L.M. Madeira, 2006. Experimental design of 2, 4-dichlorophenol oxidation by Fenton's reaction. Industrial & engineering chemistry research, 45(4): 1266-1276.

10.   Yamaguchi, K., H. Nakano, M. Murakami, S. Konosu, O. Nakayama, M. Kanda, A. Nakamura and H. Iwamoto, 1987. Lipid composition of a green alga, Botryococcus braunii. Agricultural and biological chemistry, 51(2): 493-498.

11.   Frenz, J., C. Largeau and E. Casadevall, 1989. Hydrocarbon recovery by extraction with a biocompatible solvent from free and immobilized cultures of Botryococcus braunii. Enzyme and microbial technology, 11(11): 717-724.

12.   Folch, J., M. Lees and G. Sloane-Stanley, 1957. A simple method for the isolation and purification of total lipids from animal tissues. J biol Chem, 226(1): 497-509.

13.   Kulkarni, M.G. and A.K. Dalai, 2006. Waste cooking oil an economical source for biodiesel: a review. Industrial & engineering chemistry research, 45(9): 2901-2913.

14.   Chisti, Y., 2007. Biodiesel from microalgae. Biotechnology advances, 25(3): 294-306.

15.   Mata, T.M., A.A. Martins and N.S. Caetano, 2010. Microalgae for biodiesel production and other applications: a review. Renewable and sustainable energy reviews, 14(1): 217-232.

16.   Richmond, A., 1986. Outdoor mass cultures of microalgae. Handbook of microalgal mass culture: 285-330.

17.   Mandalam, R.K. and B.Ø. Palsson, 1998. Elemental balancing of biomass and medium composition enhances growth capacity in high-density Chlorella vulgaris cultures.

18.   Azma, M., M.S. Mohamed, R. Mohamad, R.A. Rahim and A.B. Ariff, 2011. Improvement of medium composition for heterotrophic cultivation of green microalgae, Tetraselmis suecica, using response surface methodology. Biochemical Engineering Journal, 53(2): 187-195.

19.   Bajaj, I.B., S.S. Lele and R. Singhal, 2009. A statistical approach to optimization of fermentative production of poly (γ-glutamic acid) from Bacillus licheniformis NCIM 2324. Bioresource technology, 100(2): 826-832.

20.   Ren, J., M. Zhao, J. Shi, J. Wang, Y. Jiang, C. Cui, Y. Kakuda and S.J. Xue, 2008. Optimization of antioxidant peptide production from grass carp sarcoplasmic protein using response surface methodology. LWT-Food Science and Technology, 41(9): 1624-1632.

21.   Lam, M.K. and K.T. Lee, 2013. Effect of carbon source towards the growth of Chlorella vulgaris for CO 2 bio-mitigation and biodiesel production. International Journal of Greenhouse Gas Control, 14: 169-176.

22.   Li, Y., M. Horsman, B. Wang, N. Wu and C.Q. Lan, 2008. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied microbiology and biotechnology, 81(4): 629-636.

23.   Welter, C., J. Schwenk, B. Kanani, J. Van Blargan and J.M. Belovich, 2013. Minimal medium for optimal growth and lipid production of the microalgae Scenedesmus dimorphus. Environmental Progress & Sustainable Energy, 32(4): 937-945.

24.   Mandal, S. and N. Mallick, 2009. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied microbiology and biotechnology, 84(2): 281-291.

25.   Hu, R., Food product design: a computer-aided statistical approach1999: CRC Press.