The Required Land Area for Installing a Photovoltaic Power Plant

Author

University of Baghdad/College of Engineering/Department of Energy Engineering, Baghdad, Iraq

Abstract

Till now the conversion efficiency of the commercial photovoltaic (PV) solar modules is in the range of 14 to 20%. Therefore, PV power plants need very large area to achieve the desired output power. This paper presents some proper calculations to estimate land area occupied by the PV array. Calculations for the minimum and the maximum land area for a range of PV array with power capacity from 1 to 250 kW for different latitudes in the northern hemisphere were presented. Six different PV modules were selected for the calculation. A group of correlations are presented to roughly estimate both the land area and the number of PV modules per row as a function of the total power capacity required. In addition, correlations suggested to calculate the spacing between the rows in the PV array as a function of local latitude.

Keywords


1.     Islam, M., R. Saidur, N. Rahim and K. Solangi, 2010. Usage of solar energy and its status in Malaysia. Engineering e-Transaction, 5(1): 6-10.

2.     Tsai, H.-L., 2010. Insolation-oriented model of photovoltaic module using Matlab/Simulink. Solar Energy, 84(7): 1318-1326.

3.     Robb, D., 2004. Standing up to transmission reliability standards. Power engineering international, 12(2): 20-22.

4.     Karatepe, E. and T. Hiyama, 2009. Polar coordinated fuzzy controller based real-time maximum-power point control of photovoltaic system. Renewable Energy, 34(12): 2597-2606.

5.     Benner, J.P. and L. Kazmerski, 1999. Photovoltaics gaining greater visibility. IEEE spectrum, 36(9): 34-42.

6.     Gow, J. and C. Manning, 2000. Photovoltaic converter system suitable for use in small scale stand-alone or grid connected applications. IEE Proceedings-Electric Power Applications, 147(6): 535-543.

7.     Patel, H. and V. Agarwal, 2008. MATLAB-based modeling to study the effects of partial shading on PV array characteristics. IEEE transactions on energy conversion, 23(1): 302-310.

8.     Appelbaum, J. and J. Bany, 1979. Shadow effect of adjacent solar collectors in large scale systems. Solar Energy, 23(6): 497-507.

9.     Hasyim, E.S., S. Wenham and M. Green, 1986. Shadow tolerance of modules incorporating integral bypass diode solar cells. Solar cells, 19(2): 109-122.

10.   Bany, J. and J. Appelbaum, 1987. The effect of shading on the design of a field of solar collectors. Solar cells, 20(3): 201-228.

11.   Abete, A., E. Barbisio, F. Cane and P. Demartini, 1989. A study of shading effects in photovoltaic generators. 9th EC Photovoltaic Solar Energy Conference1989: 240-244.

12.   Quaschning, V. and R. Hanitsch, 1996. Numerical simulation of current-voltage characteristics of photovoltaic systems with shaded solar cells. Solar Energy, 56(6): 513-520.

13.   Alonso, M., L. Arribas, F. Chenlo and I. Cruz. Shading effect on a roof integrated grid-connected PV plant. in Proceedings of the 14th European photovoltaic solar energy conference. 1997.

14.   Ho, A. and S. Wenham. Intelligent strategies for minimising mismatch losses in photovoltaic modules and systems. in 17th European Photovoltaic Solar Energy Conference and Exhibition, Munich-Germany. 2001.

15.   Kaushika, N.D. and N.K. Gautam, 2003. Energy yield simulations of interconnected solar PV arrays. IEEE Transactions on Energy Conversion, 18(1): 127-134.

16.   Woyte, A., J. Nijs and R. Belmans, 2003. Partial shadowing of photovoltaic arrays with different system configurations: literature review and field test results. Solar energy, 74(3): 217-233.

17.   Silvestre, S. and A. Chouder, 2008. Effects of shadowing on photovoltaic module performance. Progress in Photovoltaics: Research and applications, 16(2): 141-149.

18.   Ramabadran, R. and B. Mathur, 2009. Effect of shading on series and parallel connected solar PV modules. Modern Applied Science, 3(10): 32.

19.   Hidalgo-Gonzalez, P.L., A.E. Brooks, E.S. Kopp, V.P. Lonij and A.D. Cronin. String-Level (kW-scale) IV curves from different module types under partial shade. in Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE. 2012. IEEE.

20.   Wang, U., 2011. The rise of concentrating solar thermal power. Renewable Energy World, 6.

21.   Marks, A., The Complete Guide to Game Audio: For Composers, Musicians, Sound Designers, Game Developers2012: CRC Press.

22.   Häberlin, H., Photovoltaics system design and practice2012: John Wiley & Sons.

23.   Gunerhan, H. and A. Hepbasli, 2007. Determination of the optimum tilt angle of solar collectors for building applications. Building and Environment, 42(2): 779-783.

24.   Nakamura, H., T. Yamada, T. Sugiura, K. Sakuta and K. Kurokawa, 2001. Data analysis on solar irradiance and performance characteristics of solar modules with a test facility of various tilted angles and directions. Solar energy materials and solar cells, 67(1): 591-600.

25.   Duffie, J.A. and W.A. Beckman, 1980. Solar engineering of thermal processes.

26.   Kalogirou, S.A., Solar energy engineering: processes and systems2013: Academic Press.

1.     Islam, M., R. Saidur, N. Rahim and K. Solangi, 2010. Usage of solar energy and its status in Malaysia. Engineering e-Transaction, 5(1): 6-10.

2.     Tsai, H.-L., 2010. Insolation-oriented model of photovoltaic module using Matlab/Simulink. Solar Energy, 84(7): 1318-1326.

3.     Robb, D., 2004. Standing up to transmission reliability standards. Power engineering international, 12(2): 20-22.

4.     Karatepe, E. and T. Hiyama, 2009. Polar coordinated fuzzy controller based real-time maximum-power point control of photovoltaic system. Renewable Energy, 34(12): 2597-2606.

5.     Benner, J.P. and L. Kazmerski, 1999. Photovoltaics gaining greater visibility. IEEE spectrum, 36(9): 34-42.

6.     Gow, J. and C. Manning, 2000. Photovoltaic converter system suitable for use in small scale stand-alone or grid connected applications. IEE Proceedings-Electric Power Applications, 147(6): 535-543.

7.     Patel, H. and V. Agarwal, 2008. MATLAB-based modeling to study the effects of partial shading on PV array characteristics. IEEE transactions on energy conversion, 23(1): 302-310.

8.     Appelbaum, J. and J. Bany, 1979. Shadow effect of adjacent solar collectors in large scale systems. Solar Energy, 23(6): 497-507.

9.     Hasyim, E.S., S. Wenham and M. Green, 1986. Shadow tolerance of modules incorporating integral bypass diode solar cells. Solar cells, 19(2): 109-122.

10.   Bany, J. and J. Appelbaum, 1987. The effect of shading on the design of a field of solar collectors. Solar cells, 20(3): 201-228.

11.   Abete, A., E. Barbisio, F. Cane and P. Demartini, 1989. A study of shading effects in photovoltaic generators. 9th EC Photovoltaic Solar Energy Conference1989: 240-244.

12.   Quaschning, V. and R. Hanitsch, 1996. Numerical simulation of current-voltage characteristics of photovoltaic systems with shaded solar cells. Solar Energy, 56(6): 513-520.

13.   Alonso, M., L. Arribas, F. Chenlo and I. Cruz. Shading effect on a roof integrated grid-connected PV plant. in Proceedings of the 14th European photovoltaic solar energy conference. 1997.

14.   Ho, A. and S. Wenham. Intelligent strategies for minimising mismatch losses in photovoltaic modules and systems. in 17th European Photovoltaic Solar Energy Conference and Exhibition, Munich-Germany. 2001.

15.   Kaushika, N.D. and N.K. Gautam, 2003. Energy yield simulations of interconnected solar PV arrays. IEEE Transactions on Energy Conversion, 18(1): 127-134.

16.   Woyte, A., J. Nijs and R. Belmans, 2003. Partial shadowing of photovoltaic arrays with different system configurations: literature review and field test results. Solar energy, 74(3): 217-233.

17.   Silvestre, S. and A. Chouder, 2008. Effects of shadowing on photovoltaic module performance. Progress in Photovoltaics: Research and applications, 16(2): 141-149.

18.   Ramabadran, R. and B. Mathur, 2009. Effect of shading on series and parallel connected solar PV modules. Modern Applied Science, 3(10): 32.

19.   Hidalgo-Gonzalez, P.L., A.E. Brooks, E.S. Kopp, V.P. Lonij and A.D. Cronin. String-Level (kW-scale) IV curves from different module types under partial shade. in Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE. 2012. IEEE.

20.   Wang, U., 2011. The rise of concentrating solar thermal power. Renewable Energy World, 6.

21.   Marks, A., The Complete Guide to Game Audio: For Composers, Musicians, Sound Designers, Game Developers2012: CRC Press.

22.   Häberlin, H., Photovoltaics system design and practice2012: John Wiley & Sons.

23.   Gunerhan, H. and A. Hepbasli, 2007. Determination of the optimum tilt angle of solar collectors for building applications. Building and Environment, 42(2): 779-783.

24.   Nakamura, H., T. Yamada, T. Sugiura, K. Sakuta and K. Kurokawa, 2001. Data analysis on solar irradiance and performance characteristics of solar modules with a test facility of various tilted angles and directions. Solar energy materials and solar cells, 67(1): 591-600.

25.   Duffie, J.A. and W.A. Beckman, 1980. Solar engineering of thermal processes.

26.   Kalogirou, S.A., Solar energy engineering: processes and systems2013: Academic Press.