Application of Response Surface Methodology for Optimization of Platinum(IV) Adsorption Using Magnetic Cellulose Nanoparticles Modified with Ethylenediamine

Authors

Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology,FarjamStreet,Narmak, Tehran 16846-13114, Iran

Abstract

The current study adsorption characteristics of platinum(IV) onto the ethylenediamine-modified magnetic cellulose nanoparticles (MCNGE) have been investigated. The prepared adsorbentwere characterized using Fourier transform spectroscopy (FT-IR), X-ray diffraction (XRD), Scanning electron microscopy (SEM) techniques. Optimization the experimental parameters namely Pt(IV) concentration (15-35 mg/l), temperature (34–50 °C), pH of solution (2–5), and particles dose (0.03-0.06 g) were performed using a means of central composite design (CCD) and response surface methodology (RSM). Analysis of variance (ANOVA) was conducted to evaluation the model, the main of the independent variables and their interactions for adsorption of Pt(IV) from aqueous solution. The results of the quadratic model indicated that the model was highly significant with F-value (F model = 55.09) and value of prob> F (<0.0001).The optimum adsorption conditions were determined as initial pH 2.5, temperature 46°C, adsorbent dosage 0.05 g and initial platinum(IV) ion concentration 22mg/l.The maximum capacity of MCNGE for Pt(IV) was found to be 19.45 mg/g. The magnetic cellulose nanoparticle is an environmental friendly product with low energy costs in adsorption of heavy metals from aqueous phase.

Keywords


Myasoedova, G.V., Mokhodoeva, OB., Kubrakova,I.V., 2007. Trends in sorption preconcentration combined with noble metal determination. Anal. Sci., 23(9): 1031–1039.
Barefoot, R., Van Loon, J.C., 1999. Recent advances in the determination of the platinum group elements andgold.Talanta.,49 (1):1–14.
Jaree, A., Khunphakdee, J., 2011.Separation of concentrated platinum(IV) and rhodium(III) in acidic chloride solution via liquid-liquid extraction using tri-octylamine. Ind. Eng. Chem., 17 (2): 243-247.
Huang, G.L., Yang, C., Zhang, K., Shi, J., 2009. Adsorption removal of copper ions from aqueous solution using cross-linked magnetic chitosan bead. Chin. J. Chem. Eng., 17 (6): 960–966.
Graves, D.J., 1993. Bioseparations in the magnetically stabilized fluidized bed. Chromatogr. Sci., 61 (2): 187–207.
Klemm, D., Philipp, B., Heinze , T., Heinze, U., 1998.Comprehensive Cellulose Chemistry: Functionalization of Cellulose. Volume 2, John Wiley & sons. 249.
Anirudhan T., Nima J., Diva P., 2016. Adsorption and separation behavior of uranium(VI) by 2 4-vinylpyridine-grafted-vinyltriethoxysilane-cellulose ion imprinted  polymer. J .Environ. Chem. Eng., 3 (2): 1267–1276
Haldorai, Y., Rengaraj, A., Ryu, T., Shin, J., Huh, Y.S., Han, Y., 2015. Response surface methodology fortheoptimization of lanthanum removal from an aqueous solution using a Fe3O4/chitosan nanocomposite. Mater. Sci. Eng. B., 195():20–29.
Zhang, G., Yi, L., Deng, H., Sun, P., 2014. Dyes adsorption using a synthetic carboxymethyl cellulose-acryliacid adsorbent. J. Environ. Sci., 26 (5):1203–1211.
Nasef, M.M., EL-Sayed, A.H., (2004). Preparation and application of ion exchange membranes by radiatioinduced graft copolymerization of polar monomers onto nonpolar films. Poly. Sci., 29 (6): 499-561.
Cai, J., Zhang, L., Liu, S., Liu, Y., Xu, X., Chen, X., Chu, B., Guo, X., Xu, J., Cheng, H.,Han, C.C., Kuga, S., 2008. Dynamic Self-Assembly Induced Rapid Dissolution of Cellulose at Low Temperatures. Macromolecules., 41 (23): 9345–9351.
Dahou, W., Ghemati, D., Oudia, A., Aliouche, D.,  2010. Preparation and biological characterization ofcellulose graft copolymers. Biochem. Eng. J., 48(2): 187–194.
Donia, A.M., Atia, A.A., Heniesh, A.M.,2008. Efficient removal of Hg(II) using magnetic chelating resinderived from copolymerization of bisthiourea/thiourea/glutaraldehyde. Sep. Purif. Technol., 60 (1): 46–53.
Boubakri, A., Hafiane, A., Bouguecha. S., 2014. Application of response surface methodology for modelingandoptimization of membrane distillation desalination process. J. Ind. Eng. Chem., 20 (5): 3163-3169.
Korbhati, B., Aktas, N.,Tanyolac, A., 2007. Optimization of electrochemical treatment of industrial paintwastewater with response surface methodology. J. Hazard.Mater., 148(1-2): 83–90.
Goksungur, Y.,Uren, S., Guvenc, U., 2005.Biosorption of cadmium and lead ions by ethanol treated waste baker's yeast biomass. Bioresour. Technol., 96 (1):103–109.
Aksu, Z., G¨onen, F., 2006. Binary biosorption of phenol and chromium(VI) onto immobilized activatedsludge in a packed bed: Prediction of kinetic parameters and breakthrough curves. Sep. Purif. Technol., 49(3): 205–216.
Aksu, Z., G¨onen, F., Demircan, Z., 2002.Biosorption of chromium(VI) ions by Mowital®B30H resinimmobilized activated sludge in a packed bed: comparison with granular activated carbon.ProcessBiochem.,38 (2): 175–186.
Pishgar-Komleh, S.H., Keyhani, A., Mostofi-Sarkari, M.R., Jafari, A. 2012. Application of Response Surface Methodology for optimization of Picker-Husker Harvesting Losses in Corn Seed. Iranica J. Energy & Environ., 3 (2): 134-142.
Asadi, A., Ziantizadeh, A.A.L., 2011. Statistical Analysis and Optimization of an Aerobic SBR Treating an Industrial Estate Wastewater Using Response Surface Methodology (RSM). Iranica J. Energy & Environ., 2 (4): 356-365.
Wook Won, S., Mao, J., Kwak, I.S., Sathishkumar, M., Yun, Y.S., 2010. Platinum recovery from ICPwastewater by a combined method of biosorption and incineration.J. Bioresour.Technol., 101 (4): 1135 – 1140.
Vincent, T., Marcano, J., Macaskie, L., Guibal, E., 2005. Palladium and platinum recovery from bicomponent mixtures using chitosan derivatives. J. Hydrometallurgy., 76 (1-2): 131–147.
Navarro, R.R., Sump, K., Matsumura, M., 1999. Improved metal affinity of chelating adsorbents through graft polymerization. Water. Res., 33 (9): 2037–2044.
Celevi, O., Uzum, C., Shahwan, T., Erten, H.N., 2007. A radiotracer study of the adsorption behavior ofaqueous Ba 2+ ions on nanoparticles of zero-valent iron. J. Hazard. Mater., 148 (3): 761–767.