Bio-butanol Production by Clostridium saccharoperbutylacetonicum N1-4 Using Selected Species of Brown and Red Macroalgae


1 Department of Engineering Science, College of Engineering and Agro-Industrial Technology, University of the Philippines Los Baños, College, Los Baños, Laguna, 4031, Philippines

2 Department of Environmental Engineering and Energy, Myongji University, 116 Myongji-Ro, Cheoin-Gu, Yongin, Gyeonggi-Do 449-728, Republic of Korea


Macroalgae are a promising option because they can be propagated easily along the seaside thus eliminating the need for land and nutrient resources. Hence, different macroalgae were assessed for their potential in butanol fermentation. In this study, four species of brown macroalgae (Undaria pinnatifida, Laminaria japonica, Ecklonia stolonifera, Hizikia fusiforme, and Sargassum fulvellum) and two species of red macroalgae (Porphyra tenera and Gelidium amansii) were investigated for the production of butanol by Clostridium saccharoperbutylacetonicum N1-4. To hydrolyze the polymeric materials of the algal biomass, dilute acid hydrolysis was carried out using 0.15 M H2SO4 followed by thermal pretreatment at 121°C for 1 h.  Using 100 g/L of hydrolyzed brown alga, the highest butanol production (5.51 g/L) was observed for L. japonica. Other brown and red macroalgae did not exceed the butanol production by L. japonica.  Moreover, the detoxification of the thermo-chemically pretreated hydrolysate of L. japonica using the activated carbon and overliming method, increased the butanol production by 24.14 and 12.16%, respectively. These results showed that macroalgae could be a promising substrate for butanol fermentation that is cheap, easily propagated, and non-terrestrial and non-food competing.


  1. Bankar, S. B., S. A. Survase, R. S. Singhal, and T. Granström, 2012. Continuous two stage acetone–butanol–ethanol fermentation with integrated solvent removal using Clostridium acetobutylicum B 5313. Bioresource Technology 106,110-116.
  2. Ni, Y., Y. Wang, and Z. Sun, 2012. Butanol Production from Cane Molasses by Clostridium saccharobutylicumDSM 13864: Batch and Semicontinuous Fermentation. Applied Biochemistry and Biotechnology 166, 1896-1907.
  3. Liu, Z., Y. Ying, F. Li, C. Ma, and P. Xu, 2010. Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. Journal of Industrial Microbiology and Biotechnology 37, 495-501.
  4. Gu, Y., S. Hu, J. Chen, L. Shao, H. He, Y. Yang, S. Yang, and W. Jiang, 2009. Ammonium acetate enhances solvent production by Clostridium acetobutylicum EA 2018 using cassava as a fermentation medium. Journal of Industrial Microbiology and Biotechnology 36, 1225-1232.
  5. Thang, V. H., K. Kanda, and G. Kobayashi (2010). Production of acetone–butanol–ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1-4. Applied Biochemistry and Biotechnology 161, 157-170.
  6. Tran, H. T. M., B. Cheirsilp, B. Hodgson, and K. Umsakul, 2010. Potential use of Bacillus subtilis in a co-culture with Clostridium butylicum for acetone–butanol–ethanol production from cassava starch. Biochemical Engineering Journal 48, 260-267.
  7. Qureshi N., A. Lolas, and H. Blaschek, 2001. Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA101. Journal of Industrial Microbiology and Biotechnology 26, 290-295.
  8. Liew, S., A. Arbakariya, M. Rosfarizan, and A. Raha, 2006. Production of solvent (acetone-butanol-ethanol) in continuous fermentation by Clostridium saccharobutylicum DSM 13864 using gelatinised sago starch as a carbon source. Malaysian Journal of Microbiology 2, 42-50.
  9. Wang, L. and H. Chen, 2011. Acetone-butanol-ethanol fermentation and isoflavone extraction using kudzu roots. Biotechnology and Bioprocess Engineering 16, 739-745.
  10. Survase, S. A., E. Sklavounos, G. Jurgens, A. Van Heiningen, and T. Granström, 2011. Continuous acetone–butanol–ethanol fermentation using SO2–ethanol–water spent liquor from spruce. Bioresource Technology 102, 10996-11002.
  11. Zhang, Y., Y. Ma, F. Yang, and C. Zhang, 2009. Continuous acetone–butanol–ethanol production by corn stalk immobilized cells. Journal of Industrial Microbiology and Biotechnology 36, 1117-1121.
  12. Ezeji T., and H. P. Blaschek, 2008. Fermentation of dried distillers’ grains and solubles (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. Bioresource Technology  99, 5232-5242.
  13. Grobben, N. G., G. Eggink, F. P. Cuperus, and H. J. Huizing, 1993. Production of acetone, butanol and ethanol (ABE) from potato wastes: fermentation with integrated membrane extraction. Applied Microbiology and Biotechnology 39, 494-498.
  14. Hüsemann, M. H., L. Kuo, L. Urquhart, G. A. Gill, and G. Roesijadi, 2012. Acetone-butanol fermentation of marine macroalgae. Bioresource Technology 108, 305-309.
  15. Potts T., Du J., Paul M., May P., Beitle R., and J. Hesterin, 2012. The Production of Butanol from Jamaica Bay Macro Algae. Environmental Progress and Sustainable Energy 31(1), 29-36.
  16. van der Wal H., Sperber B. L.H.M., Houweling-Tan B., Bakker R.R.C., Brandenburg W., and A.M. López-Contreras, 2008. Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresource Technology 128, 431-437.
  17. Khambhaty Y., Upadhyay D., Kriplani Y.,  Joshi N., Mody K.,  and M. R. Gandhi, 2013. Bioethanol from Macroalgal Biomass: Utilization of Marine Yeast for Production of the Same. Bioenergy Research 6, 188–195.
  18. Kim G. S., Shin M-K., Kim Y. J., Oh K.K., Kim J.S., Ryu H.J., and K. Hyup, 2010. Method of producing biofuel using sea algae. US Patent 20100124774.
  19. Song, J., J. Ventura, C. Lee, and D. Jahng, 2011. Butyric acid production from brown algae using Clostridium tyrobutyricum ATCC 25755. Biotechnology and Bioprocess Engineering 16(1), 42-49.
  20. Papoutsakis, E.T., 2008. Engineering solventogenic clostridia. Current Opinion in Biotechnology 19, 420-429.
  21. Lütke-Eversloh T, and H. Bahl, 2011. Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Current Opinion in Biotechnology 22, 634-647.
  22. Ezeji, T. C., N. Qureshi, and H. P. Blaschek, 2007. Production of acetone butanol (AB) from liquefied corn starch, a commercial substrate, using Clostridium beijerinckii coupled with product recovery by gas stripping. Journal of Industrial Microbiology and Biotechnology 34, 771-777.
  23. Monot F. and J.M. Engasser, 1983. Production of acetone and butanol by batch and continuous culture of Clostridium acetobutylicum under nitrogen limitation. Biotechnology Letters 5(4), 213-218.
  24. Bahl H., Gottwald M., Kuhn A., Rale V., Adersch W. and G. Gottschalk, 1985. Nutritional factors affecting the ratio of solvents produced by Clostridium acetobutylicum. Applied Environmental Microbiology 52(1), 162-172.
  25. Lee S.Y., Park J.H., Jang S.H., Nielsen L.K., Kim J. and K.S. Jung, 2008. Fermentative butanol production by clostridia. Biotechnology and Bioengineering 101, 209-228.
  26. Gapes J.R., 2000. The economics of acetone-butanol fermentation - Theoretical and market considerations. Journal of Molecular Microbiology and Biotechnology 2(1), 27-32.
  27. Tashiro, Y., K. Takeda, G. Kobayashi, K. Sonomoto, A. Ishizaki, and S. Yoshino, 2004. High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-Stat continuous butyric acid and glucose feeding method. Journal of Bioscience and Bioengineering 98(4), 263-268.
  28. Miller, G. L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31, 426-428.
  29. Ventura, J. S., and D. Jahng, 2013. Improvement of Butanol Fermentation by Supplementation of Butyric Acid Produced from a Brown Alga. Biotechnology and Bioprocess Engineering 18, 1142-1150.
  30. Hongo M. (1960). Process for producing butanol by fermentation. US Patent 2,945,786.
  31. Jones DT, and D.R. Woods, 1986. Acetone-butanol fermentation revisited. Microbiological Reviews 50(4), 484-524.
  32. Scalbert A. (1991). Antimicrobial properties of tannins. Photochemistry 30, 3875-3883.