Evaluation of Methane Adsorption on the Modified Zeolite 13X

Authors

Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Farjam Street, Narmak, P.O. Box 16846-13114, Tehran, Iran

Abstract

In this study nano structured zeolite 13X as adsorbent for methane gas was used. Ni and Al ions were used to modify the pores of the zeolite and the methane gas adsorption capacity was measured at room temperature and pressure between 1 to 12 bars. The textural properties and structure order of the zeolite were studied by XRD and nitrogen adsorption-desorption analysis. Inductive coupled plasma (ICP) technique was used to determine the amounts of metals loaded on the zeolite.

Keywords


1.   Maljanen, M., P. Yli-Pirilä, J. Hytönen, J. Joutsensaari and P.J. Martikainen, 2013. Acidic northern soils as sources of atmospheric nitrous acid (HONO). Soil Biology and Biochemistry, 67: 94-97.

2.   Wuebbles, D.J. and K. Hayhoe, 2002. Atmospheric methane and global change. Earth-Science Reviews, 57(3): 177-210.

3.   Donner, L. and V. Ramanathan, 1980. Methane and Nitrous Oxide: Their Effects on the Terrestrial Climate. Journal of the Atmospheric Sciences, 37(1): 119-124.

4.   Ferch, H., 1980. Zeolites and clay minerals as sorbents and molecular sieves. Von R. M. Barrer. Academic Press, London –New York 1978. 1. Aufl., VII, 497 S., zahlr. Abb. u. Tab., Ln., $ 52.50. Chemie Ingenieur Technik, 52(4): 366-366.

5.   Okumura, K., S. Matsumoto, N. Nishiaki and M. Niwa, 2003. Support effect of zeolite on the methane combustion activity of palladium. Applied Catalysis B: Environmental, 40(2): 151-159.

6.   Chatterjee, A. and F. Mizukami, 2004. Location and role of exchangeable cations in zeolite catalysis: a first principle study. Chemical Physics Letters, 385(1–2): 20-24.

7.    Hui, K., C. Chao, C. Kwong and M. Wan, 2008. Use of multitransition-metal-ion-exchanged zeolite 13X catalysts in methane emissions abatement. Combustion and Flame, 153(1): 119-129.

8.   Mukainakano, Y., K. Yoshida, S. Kado, K. Okumura, K. Kunimori and K. Tomishige, 2008. Catalytic performance and characterization of Pt–Ni bimetallic catalysts for oxidative steam reforming of methane. Chemical Engineering Science, 63(20): 4891-4901.

9.   Khalili  ,S., A.A. Ghoreyshi and M. Jahanshahi, 2012. CO Separation from Syngas by Multiwall Carbon Nanotube 2. adsorption, 2: 2. Miyawaki, J., T. Kanda, T. Suzuki, T. Okui, Y. Maeda and K.

10. Kaneko, 1998. Macroscopic evidence of enhanced formation of methane nanohydrates in hydrophobic nanospaces. The Journal of Physical Chemistry B, 102(12): 2187-2192.

11. Cook, T.L., C. Komodromos, D.F. Quinn and S. Ragan, Chapter 9 - Adsorbent Storage for Natural Gas Vehicles, in Carbon Materials for Advanced Technologies, T.D. Burchell, Editor 1999, Elsevier Science Ltd: Oxford. p. 269-302.

12. Himeno, S., T. Komatsu and S. Fujita, 2005. High-Pressure Adsorption Equilibria of Methane and Carbon Dioxide on Several Activated Carbons. Journal of Chemical & Engineering Data, 50(2): 369-376.

13. Xu, X., C. Song, B.G. Miller and A.W. Scaroni, 2005. Influence of moisture on CO2 separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41. Industrial & engineering chemistry research, 44(21): 8113-8119.

14. Anbia, M. and V. Hoseini, 2012. Development of MWCNT@MIL-101 hybrid composite with enhanced adsorption capacity for carbon dioxide. Chemical Engineering Journal, 191:326-330.

15. Anbia, M., V. Hoseini and S. Sheykhi, 2012. Sorption of methane, hydrogen and carbon dioxide on metal-organic framework, iron terephthalate (MOF-235). Journal of Industrial and Engineering Chemistry, 18(3): 1149-1152.

16. Dlugokencky, E.J., L.P. Steele, P.M. Lang and K.A. Masarie, 1994. The growth rate and distribution of atmospheric methane. Journal of Geophysical Research: Atmospheres, 99(D8): 1702117043.

17. Ruthven, D.M., Principles of adsorption and adsorptionprocesses1984: John Wiley & Sons.

18. Figueiredo, H. and C. Quintelas, 2014. Tailored zeolites for the removal of metal oxyanions: Overcoming intrinsic limitations of zeolites. Journal of Hazardous Materials, 274: 287-299.

19. Yu, H., Y. Lv, K. Ma, C. Wang, Z. Xue, Y. Zhao, Y. Deng, Y. Dai and D. Zhao, 2014. Synthesis of core–shell structured zeoliteA@ mesoporous silica composites for butyraldehyde adsorption. Journal of colloid and interface science, 428: 251-256.

20. Zhang, J., N. Burke, S. Zhang, K. Liu and M. Pervukhina, 2014. Thermodynamic analysis of molecular simulations of CO2 and CH 4 adsorption in FAU zeolites. Chemical Engineering Science, 113: 54-61.

21. García-Trenco, A., S. Valencia and A. Martínez, 2013. The impact of zeolite pore structure on the catalytic behavior of CuZnAl/zeolite hybrid catalysts for the direct DME synthesis. Applied Catalysis A: General, 468: 102-111.

22. Su, J., E. Kapaca, L. Liu, V. Georgieva, W. Wan, J. Sun, V. Valtchev, S. Hovmöller and X. Zou, 2014. Structure analysis of zeolites by rotation electron diffraction (RED). Microporous and Mesoporous Materials, 189: 115-125.

23. Blakeman, P.G., E.M. Burkholder, H.-Y. Chen, J.E. Collier, J.M. Fedeyko, H. Jobson and R.R. Rajaram, 2014. The role of pore size on the thermal stability of zeolite supported Cu SCR catalysts. Catalysis Today, 231:56-63.

24. Shao, H., Y. Li, X. Gao, C. Cao, Y. Tao, J. Lin and T. Jiang, 2014. Microporous zeolite supported Cr (acac) 3/PNP catalysts for ethylene tetramerization: Influence of supported patterns and confinement on reaction performance. Journal of Molecular Catalysis A: Chemical, 390: 152-158.

25. Hamidzadeh, M., A. Tarlani and M. Ghassemzadeh, 2015, Iranica Journal of Energy & Environment. , 6(4): 274-281.

26. Tebal, N., Leachate Pollutants Adsorption Using Potassium Hydroxide and Surfactant Modified Bentonite for Possible Use as Slow Release Fertiliser.