A Novel and Rapid Harvesting Method of Microalgae Using Saw Dust Coated Polypyrrole


School of Industrial Technology, University Sains Malaysia, George Town, Penang, 11800, Malaysia


In this study a simple and rapid harvesting method using electro conductive polymer coated saw dust has been presented as a new coagulant for separating Chlorella vulgaris from a diluted suspension. Polypyrrole (PPy) coated saw dust as a novel coagulant was prepared via in-situ polymerization of pyrrole (Py) monomer using FeCl3  oxidant in aqueous medium in which saw dust particles were suspended. The zeta potential of coagulant and C. vulgaris and X-ray photoelectron spectroscopic (XPS) analysis of coagulant were characterized. PPy maintain predominantly positive charge over a wide pH range (2-10) with an isoelectric point 10.4 while, C. vulgaris maintained negative surface charge from pH 5 and onward with isoelectric point 3.8. The microalgae showed the highest separation efficiency at pH 10. The maximal recovery efficiency reached more than 90% for microalgae at a stirring speed of 120 rpm within 7 min. The maximal adsorption capacity of C. vulgaris was 28.8 mg dry biomass/mg-saw dust coated PPy. The concentration factor obtained is higher than 32 which save energy and time associated with microalgal harvesting and allows a reduction in the equipment size necessary for biomass dewatering and improves the feasibility of using these microorganisms in biofuel or wastewater processes.


1.       Skjånes, K., C. Rebours, and P. Lindblad, 2012. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Critical Reviews in Biotechnology, 1–44.

2.       Salim,  S.,  R.  Bosma,  M.H.  Vermuë,  R.H.  Wijffels,  2011. Harvesting of microalgae by bio-flocculation. Journal of Applied Phycology,  23: 849–855.

3.       Mohsin, R., Z.A. Majid, A.H. Shihnan, N.S. Nasri, Z. Sharer, 2015. Effect of Biodiesel Blend on Exhaust Emission and Engine Performance of Diesel Dual Fuel Engine.   Iranica Journal of Energy and Environment, 6: 154-160.

4.       Van Beilen, J.B. 2010. Why microalgal biofuels won’t save the internal    combustion    engine.    Biofuels,    Bioproducts    and Biorefining, 4: 41–52.

5.       Uduman, N. Y. Qi, M.K. Danquah, and A.F. Hoadley, 2010. Marine microalage flocculation and focussed beam reflectance measurement. Chemical Engineering Journal, 162: 935–40.

6.       Brennan, L. and P. Owende, 2010. Biofuels from microalgae-a review   of   technologies   for   production,   processing,   and extractions   of   biofuels   and   co-products.   Renewable   & Sustainable Energy Reviews, 14: 557–577.

7.       Chen, C.Y., K.L. Yeh, R. Aisyah, D.J. Lee, J.S. Chang, 2011. Cultivation,    photobioreactor    design    and    harvesting    of microalgae for biodiesel production. Bioresource Technology, 102: 71–81.

8.       Park, J.K., R.J. Craggs, and A.N. Shilton, 2011. Wastewater treatment   high   rate   algal   ponds   for   biofuel   production. Bioresourse Technology, 102: 35–42.

9.       Rawat, I., R.R. Kumar, T. Mutanda, and F. Bux, 2011. Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88: 3411–24.

10.     Pragya, N., K.K. Pandey, and P.K. Sahoo, 2013, A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renewable and Sustainable Energy Reviews, 24: 159–171.

11.     Papazi,  A.,  P. Makridis, and  P. Divanach,  2010.  Harvesting Chlorella minutissima using cell coagulants. Journal of Applied Phycology, 22: 349–355.

12.     Aisyah, S.I., M.N.S. Norfariha, M.A.M. Azlan, I. Norli, 2014. Comparison  of  Synthetic  and  Natural  Organic  Polymers  as Flocculant for Textile Wastewater Treatment. Iranica Journal of Energy & Environment, 5 : 436-445

13.     Nassar, N.N., 2010. Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents. Journal of Hazardous Materials, 184: 538–546.

14.     Benemann, J.R., 1997, Feasibility analysis of photobiological hydrogen production. International Journal of Hydrogen Energy, 22: 979–987

15.     Zhang,  X.,  and  R.  Bai,  2003.  Surface  electric  properties  of polypyrrole in aqueous solutions, Langmuir 19: 10703–10709.

16.     Ansari, R., N.K. Fahim, and A.F. Dellavar, 2009. Removal of thiocyanate ions from aqueous solutions using polypyrrole and polyaniline conducting electroactive polymers. Journal of the Iranian Chemical Society, 2: 163-171.

17.     Chinnasamy, S., A. Bhatnagar, R.W. Hunt, and K.C. Das, 2010. Microalgae cultivation in a wastewater dominated by carpet milleffluents for biofuel applications. Bioresource Technology, 101: 3097-3105.

18.     Widholm,  J.M.,  1972.  The  use  fluorescein  diacetate  and phenosafranine for determining viability of cultured plant cells. Stain Technology, 47: 89–94.

19.     Kang, E.T., K.G. Neoh, and K.L. Tan, 1993. X-ray photoelectron spectroscopic  studies  of  electroactive  polymers.  Advance  in Polymer Science, 106: 135-190.

20.     Xu, L., C. Guo, F. Wang, S. Zheng, and C.Z. Liu, 2011. A simple and rapid harvesting method for microalgae by in situ magnetic separation. Bioresourse Technology, 102: 10047–10051.

21.     Hena,  S., 2010. Removal of chromium hexavalent ion  from aqueous solutions using biopolymer chitosan coated with poly 3-methyl thiophene polymer. Journal of Hazardous Material, 181:474–479.

22.     Freundlich, H., 1907. Ueber die adsorption in Loesungen, Z. Physical Chemistry, 57: 385–470.

23.     Zheng, H., Z. Gao, J. Yin, X. Tang, X. Ji, and H. Huang, 2012. Harvesting of microalgae by flocculation with poly (γ-glutamic acid). Bioresourse Technology, 112: 212–220.

24.     Prochazkova, G., I. Safarik, and T. Branyik, 2013. Harvesting microalgae      with      microwave      synthesized      magnetic microparticles. Bioresour. Technol. 130: 472–477.

25.     Hena, S., N. Fatihah, S. Tabassum, S. Lim, and J. Lalung, 2015. Magnetophoretic  harvesting  of  freshwater  microalgae  using Polypyrrole/Fe3O4 nanocomposite and its reusability, Journal of Applied Phycology,  DOI: 10.1007/s10811-015-0719-x.

26.     Bai, R., and X. Zhang, 2001. Polypyrrole-Coated Granules for Humic Acid Removal. Journal of Colloid Interface Science, 243: 52–60.

27.     Cassignol, C., P. Olivier, and A. Ricard, 1998. Influence of the Dopant  on  the  Polypyrrole  Moisture  Content:  Effects  on Conductivity and Thermal Stability. Journal of Applied Polymer Science, 70: 1567–1577.

28.     Ras, M., Lardon, L., Bruno, S., Bernet, N., Steyer, J. P., 2011. Experimental study on  a coupled  process of production  and anaerobic    digestion    of    Chlorella    vulgaris.    Bioresource Technology. 102: 200-206.

29.     Oh, H.M., Lee, S. J., Park, M. H., Kim, H. S., Kim H. C., Yoon, J. H., Kwon, G. S., Yoon, B. D., 2001. Harvesting of Chlorella vulgaris  using  bioflocculant  from  Paenibacillus  sp.  AM49. Biotechnology, 15:1229-1234.

30.     Xu, L., Wang, F., Li, H. Z., Hu, Z. M., Guo, C., Liu, C. Z., 2010. Develpoment  of  an  efficient  electroflocculation  technology integrated with dispersed air flotation for harvesting microalgae. Journal of Chemical Technology and Biotechnology. 85: 1504-1507.